# On the impact of lensing on standard siren measurements



Sofia Canevarolo, Loek van Vonderen, Nora Elisa Chisari Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands s.canevarolo@uu.nl

1





## Lensing of standard sirens

Gravitational waves (GWs) from merging binaries of compact objects

From the GW amplitude: luminosity distance of the source,

$$d_L(z) = \frac{c(1+z)}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_{DR}}}$$

 $\rightarrow$  Constraints on  $H_0$  and  $\Omega_m$ 

From the GW phase: redshifted chirp mass,  $\mathcal{M}_z = (1+z)\mathcal{M}$ 









Including  $\mu$  in the SNR accounts for the *lensing selection effect* 

#### Bright sirens

(ET)

- GW with an electromagnetic counterpart, redshift can be measured
- Cut-off at z = 2, based on the coverage of future spectroscopic galaxy surveys
- Assuming 3000 multimessenger events in  $\sim 10$ years



Catalogues publicly available:



3

#### Dark sirens

- Without electromagnetic counterpart
- Observationally-motivated intrinsic distributions for neutron star masses

## Impact on the neutron star mass distribution

- Bright and dark sirens events J
- Mass-redshift degeneracy broken using  $d_L^{obs}(z,\mu) \rightarrow Biased$  masses,  $m_{1,2}^{obs} = \frac{1+z}{1+z^{obs}} \ m_{1,2} \equiv \mu_m \ m_{1,2}$





6

7

• Assuming  $10^6$  binary neutron stars in  $\sim 10$  years

### Bias on cosmological parameters: method

- Considering bright sirens and neglecting lensing in the analysis,  $\Delta d_L = d_L^{obs} - d_L = \left(\frac{1}{\sqrt{\mu}} - 1\right) d_L \rightarrow b_{\theta_i} = \hat{\theta_i} - \theta_i^{true}$ with  $\theta_i = (H_0, \Omega_m, ...)$ .
- Fisher matrix formalism extended to include systematic errors
- Full likelihood Monte Carlo Markov Chain analysis





Canevarolo S., van Vonderen L., Chisari N.E. (2024)

Main Messages

- *Lensing* impacts the *luminosity distance* inferred from GW events. This will likely become relevant for ET.
- For bright sirens, lensing acts as a *systematic error* in the inference of the  $\bullet$ cosmological parameters.
- High precision estimates needed to appreciate this effect, whose magnitude depends on specific assumptions.
- Lensing also affects the *observed neutron star mass distribution* obtained from dark siren events, especially the *high-mass tail*.