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Figure 1: When a redshift shell coincides with a shell in
distance, the correlation between the maps is maximal.

•Galaxies and binary black hole (BBH) mergers offer complementary radial information: redshift and
luminosity distance, respectively. The relationship between these two quantities depends on the
cosmological model, particularly on H0:
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•Since these objects trace the same large-scale structure, their angular cross-correlation peaks when
the redshift shells match the distance shells. This peak acts as a cosmic ruler, independent of tracer
distributions, bias models, or non-linear structure evolution.

•This cross-correlation method avoids assumptions commonly made in other approaches regarding the
astrophysical properties of BBHs, such as their merger rates and mass distribution, providing a robust
and model-independent tool for constraining cosmological parameters.

Methods

•We used GLASS1 to simulate 1000 full-sky light cones for both galaxies and BBHs, in very
thin redshift bins with width dz = 0.02, for a given fiducial cosmology: h = 0.7, Ωm = 0.3.

•The galaxies follow a generic distribution for the next generation of spectroscopic surveys,
while the distribution of BBH mergers were forecast with GWDALI2 for a 3rd generation
network of GW detectors (ET+2CE).

•To account for catalog incompleteness, all the host galaxies were removed.

•Weak lensing corrections (D′
L = DL/

√
µ) and Gaussian errors were added to the positions

of each BBH, following the expected error distribution.

•A mask covering 1/3 of the sky was applied to the galaxy maps and the cross-correlation
(Figure 2) was computed with NaMaster.

0.0 0.5 1.0 1.5 2.0
z

0

3875

7750

11625

15500

D
L

[M
p

c]

Cgb
` (z,DL) ( ` = 100 )

(H0,Ωm) = (70, 0.3)

(H0,Ωm) = (65, 0.2)

(H0,Ωm) = (75, 0.4)

0.0

0.2

0.4

0.6

0.8

1.0

×10−8

Figure 2: Average cross-correlation matrix of the 1000 simulated light cones.

Results
•The likelihood for some set of parameters θ µ is given by

−2logL = χ
2(θ µ) = ∑
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i′ j′
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ℓ −Ci j

ℓ (θ
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•The covariance matrix for our observable has ≈ ℓmax× [(Nz+Nd)
2/2]2 degrees of freedom.

Therefore, a numerical sample covariance with thin redshift bins is unfeasible, and we use the
Gaussian approximation to compute its inverse3:
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Network HHH000
[
kms−1 Mpc−1

]
ΩΩΩmmm

LVK O5 69.3+4.0
−4.4 0.38+0.19

−0.15

LVK+ET 69.99+0.52
−0.57 0.300+0.012

−0.010

ET+2CE 70.01+0.34
−0.26 0.3000+0.0068

−0.0064
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Figure 3: Posteriors on H0 and Ωm for the ET+2CE and LVK+ET networks.
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