From Axion Searches

TES TECHNOLOGY AT

Christina Schwemmbauer¹, Katharina-Sophie Isleif², Friederike Januschek¹, Axel Lindner¹, Manuel Meyer³, Gulden Othman⁴, Elmeri Rivasto³, José Alejandro Rubiera Gimeno²

75

¹Deutsches Elektronen Synchrotron DESY, Hamburg, Germany ²Helmut-Schmidt Universität, Hamburg, Germany ³CP3-Origins, University of Southern Denmark, Odense, Denmark ⁴Institut für Experimentalphysik, Universität Hamburg, Germany

To Direct Detection

-DM – ELECTRON SCATTERING

DM-electron scattering [3] is a promising approach for detecting WIMP-like light Dark Matter (DM) candidates with sub-GeV masses.

When probing these lower mass ranges, the maximum energy transferred in a scattering event is entire kinetic energy of incident DM particle:

$$E_{T_{\text{max}}} = E_{\text{kin}} \sim m_{\chi} v^2 \sim 10^{-6} m_{\chi}$$

where $v \approx 10^{-3}$ is the DM halo velocity.

THE ALPS II EXPERIMENT

ALPS II (Any Light Particle Search) is a currently running Light-Shining-through-Walls (LSW) experiment at DESY Hamburg, Germany. It exploits photon-ALP conversion in magnetic fields [1] to search for ALPs at an ALP-photon coupling down to $g_{a\gamma\gamma} = 2 \cdot 10^{-11} \text{ GeV}^{-1}$, independent of astrophysical and cosmological models.

- ALPS II consists of two $L = 12 \times 8.8$ m magnet strings of B = 5.3 T dipole magnets
- A production cavity (PC i.e. Fabry-Perot resonator) increases probability for photon-ALP conversion of laser light in a magnetic field
- Generated ALPs can cross a light-tight wall between the cavities, which cannot be penetrated by the laser light
- ALPs are re-converted to photons by the inverse effect in the regeneration cavity (RC)

regenerated photon is

High system detection efficiency	Newest measurements: > 90% efficiency		 Future ALPS II upgrades may incorporate TES detectors for photon counting via ALP-photon conversion, with the system's intrinsic background and detection efficiency already meeting current
Good energy resolution (at 1064 nm)	Enhanced analysis methods improve the (1064 nm) energy resolution from 8% to 5.3%		requirements
Low intrinsic background - no fiber (radioactive	Cryostat shielding and pulse shape analysis based background		extrinsic backgrounds for ALPS II
decays, cosmics, etc.)	reduction yield a background of 6.9x10⁻⁶ cps [2] at high signal efficiency		 The TES system is being explored for the independent detection of ~MeV dark matter
Low extrinsic background - with fiber (mainly black-body radiation)	Enhanced energy resolution improved the background reduction down to 10⁻⁵ cps . Additional efforts:	Background requirements: < 7.7 x 10 ⁻⁶ cps	 Linear TES energy response allows for energy-resolved dark matter searches down to sub-eV energies, distinguishing photon-like pulses from background through fit parameters
	 Currently building a setup to employ optical bandpass filters in the cold including cryo adjustment 		O Analysis towards an energy spectrum with subsequent investigation of
	 Fiber curling to cutoff higher wavelengths 		uncharted terrestrial light Divi parameter space currently ongoing
SDU: SDU: SDU: SDU: SDU: SDU: SDU: SDU:	Universität Hamburg R FORSCHUNG DER LEHRE DER BILDUNG	References : [1] K. Ehret et al., <u>NIMA 612(1)83-960 (2009)</u> [2] R. Shah et al., <u>J Low Temp Phys 209, 355–362 (2022)</u> [3] Y. Hochberg et al., Physical Review Letters, 116 (1) (2 [4] C. Schwemmbauer et al., <u>PoS COSMICWISPers (2024</u>)	016)), 055 <u>christina.schwemmbauer@desy.de</u>