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Overview: O(D,D)-complete string cosmology
In general relativity (GR) the spacetime metric gµν is the only gravitational field. However, in string theory it
is just one of the massless modes of the closed string, appearing alongside two other fields: a skew-symmetric
tensor ‘B-field’ Bµν, and a scalar dilaton ϕ. Moreover, different backgrounds of the three fields {gµν, Bµν, ϕ}
transform into each other under a hidden O(D,D) symmetry. This symmetry can be made manifest in the
framework of double field theory (DFT), so called because the spacetime dimension D is formally doubled.
However, physical backgrounds correspond to different D-dimensional slices of the doubled space. A doubled
geometry can be constructed as well as DFT actions for additional matter (scalars, fermions, etc.), leading to
a DFT generalization of Einstein’s equations with an enhanced energy-momentum tensor.

As early-universe data continues to improve and cosmological tensions persist, it is pertinent to explore
whether a modified theory of gravity can alleviate such tensions. Meanwhile, if string theory is really the
correct theory of quantum gravity, the ‘stringy gravity’ of {gµν, Bµν, ϕ} may provide a natural candidate. In
the DFT framework, the O(D,D) symmetry uniquely prescribes the allowed interactions between the ex-
tended gravitational sector and other matter, leading to novel features beyond conventional string cosmology.

Double field theory
In double field theory [2, 3] we describe D-dimensional physics using D + D coordinates, xA = (x̃µ, x

ν),
A = 1, . . . , 2D. Doubled vector indices are raised and lowered using the O(D,D)-invariant

JAB =

(
0 1D

1D 0

)
= J AB .

What does it mean to ‘double’ the number of spacetime dimensions? Consistency requires a section condition,

∂A∂
A = 2 ∂µ∂̃

µ = 0 .

A natural choice is ∂̃µ = 0, i.e. choosing all fields to be independent of the x̃µ coordinates. The theory is not
truly ‘doubled’, rather it is just a convenient repackaging of D-dimensional physics.

• Field content of DFT: A symmetric O(D,D) generalized metric HAB and a DFT dilaton d.

• Reduction to closed-string massless sector (‘bosonic supergravity’):
On spacetime backgrounds, under the section choice ∂̃µ ≡ 0, the fields {HAB, d} reduce to {gµν, Bµν, ϕ} as

HAB =

 gµν − gµσBσν

Bµρg
ρν gµν −Bµρg

ρσBσν

 , e−2d = e−2ϕ√−g .

Doubled diffeomorphism symmetry reduces to ordinary diffeomorphisms and B-field gauge transformations.
The DFT Ricci scalar R gives the ‘stringy’ gravitational Lagrangian [4],

R = R + 4□ϕ− 4∂µϕ∂
µϕ− 1

12HλµνH
λµν ,

where R is the usual Ricci scalar from gµν, and Hλµν = 3∂[λBµν] is the field strength of Bµν (‘H-flux’).

Einstein Double Field Equations
We can extend O(D,D) covariance to interactions with matter {Υa} via an action of the form

S =

∫
Σ
e−2d

[
1

16πGR + Lm(Υa)
]
,

where Lm is an O(D,D)-covariant Lagrangian for the additional matter fields {Υa}, and the integral is taken
over a D-dimensional section Σ. Crucially, the O(D,D) symmetry fixes the covariant integration measure to
be e−2d, and not simply

√
−g as in GR. This constrains the allowed couplings between stringy gravity and

additional matter. In particular, the possibility of ‘minimal coupling’ in Einstein frame is not guaranteed.

Varying this action yields a DFT generalization of Einstein’s equations, or ‘Einstein double field equations’ [5],

GAB = 8πGTAB ,

where the DFT energy-momentum tensor TAB is conserved on-shell. On spacetime backgrounds, the Einstein
double field equations reduce to the usual closed-string massless sector equations of motion plus source terms,

Rµν + 2∇µ∇νϕ− 1
4HµρσHν

ρσ = 8πGK(µν) ,

∇ρ
(
e−2ϕHρµν

)
= 16πGe−2ϕK[µν] ,

R + 4□ϕ− 4∇µϕ∇µϕ− 1
12HλµνH

λµν = 8πGT(0) .

From the DFT perspective, Kµν sources HAB and T(0) sources d. We can arrange these into source terms for

δgµν : Tµν ≡ e−2ϕ
(
K(µν) −

1

2
gµνT(0)

)
,

δBµν : Θµν ≡ e−2ϕK[µν] ,

δϕ : σ ≡ e−2ϕT(0) .

Here Tµν is the usual energy-momentum tensor in GR, while Θµν and σ represent sources for Bµν and ϕ,
respectively. Conservation of the DFT energy-momentum tensor gives rise to generalized conservation laws,

∇µTµν +
1

2
HνµλΘ

µλ −∇νϕσ = 0 , ∇µΘµν = 0 .

Homogeneous and isotropic backgrounds
Now consider homogeneous and isotropic backgrounds in D = 4. The most general gravitational ansatz is

ds̄2 = −N(t)2dt2 + a(t)2

[
dr2

1−Kr2
+ r2dΩ2

]
, B̄(2) =

hr2√
1−Kr2

cosϑ dr ∧ dφ , ϕ̄ = ϕ̄(t) ,

where B̄(2) ≡ 1
2B̄µν dx

µ ∧ dxν. Note that the corresponding H-flux H̄(3) ≡ dB̄(2) = h dV ol3, where h is
constant and dV ol3 is the spatial volume form. Similarly the DFT energy-momentum tensor is constrained as

T̄µ
ν =

 − ρ̄(t) 0

0 p̄(t)δij

 , Θ̄µν = 0 , σ̄ = σ̄(t) .

The generalized conservation law gives one non-trivial equation: ρ̄′ + 3NH (ρ̄ + p̄) + ϕ̄′σ̄ = 0 ,

where ′ ≡ d/dt and H ≡ a′/(Na). This contains an extra term proportional to the dilaton source, ϕ̄′σ̄. The
Einstein double field equations lead to an O(D,D)-completion of the Friedmann equations [6],

8πG

3
ρ̄e2ϕ̄ +

h2

12a6
= H2 − 2

(
ϕ̄′

N

)
H +

2

3

(
ϕ̄′

N

)2

+
K

a2
, (1)

4πG

3
(ρ̄ + 3p̄)e2ϕ̄ +

h2

6a6
= −H2 − H ′

N
+

(
ϕ̄′

N

)
H − 2

3

(
ϕ̄′

N

)2

+
1

N

(
ϕ̄′

N

)′
, (2)

4πG

3
(2ρ̄− σ̄) e2ϕ̄ = −H2 − H ′

N
+

2

3N

(
ϕ̄′

N

)′
. (3)

If ϕ̄′ = ϕ̄′′ = 0 and h = 0, we make contact with GR cosmology on the critical line, σ̄ = ρ̄− 3p̄.

Solutions

We can define two equation-of-state parameters: w ≡ p̄

ρ̄
, λ ≡ σ̄

ρ̄
.

• Power-law solutions:
For constant w and λ (‘generalized perfect fluid’), various power-law solutions with ρ = ρ0 a

−3(1+w)e−λϕ.

• Solutions beyond power law: Many analytic solutions, e.g. radiation plus a massless scalar field Φ̄:

ρ̄Φ̄ = 1
2Φ̄

′2a−2e−2ϕ̄ , ρ̄r = ρ̄r0a
−4 , ρ̄ = ρ̄Φ̄ + ρ̄r ⇒ w ∈ [1/3, 1] , λ = 1− 3w ;

a2 =
τ (C1 + E0τ )
1 +Kτ2

e2ϕ̄ , e2ϕ̄ =

(
C1τ

τ∗ (C1 + E0τ )

)ho
C1
+

h2

4h2o

(
C1τ

τ∗ (C1 + E0τ )

)−ho
C1

, τ =


tan(η − η0) , K = 1 ,

η − η0 , K = 0 ,

tanh(η − η0) , K = −1 .

Here η is conformal time, η0, C1, τ∗ and ho are constants, and E0 ≡ 8πGρ̄0/3. The dilaton is constant at late
times for K ∈ {0,−1}, and the scale factor has a bounce due to the background H-flux (c.f. h = 0 case [7]). It
is pure scalar for E0 = 0 and pure radiation for ho = ±

√
3C1 (both conditions together: ‘DFT vacuum’ [7, 8]).

Cosmological perturbations
Many early-universe phenomena depend on the nature of small fluctuations around a homogeneous and
isotropic background. From now on, consider a flat universe, K = 0 and work in conformal gauge (N = a).

• Gravitational perturbations:
Expanding to linear order, the perturbed metric, B-field and dilaton may be written as

gµν ≡ a2

−(1 + 2A) Bj

Bi δij + hij

 , B(2) ≡ B̄(2) + fi dx
i ∧ dη +

1

2
mij dx

i ∧ dxj , ϕ = ϕ̄ + δϕ .

Under a scalar-vector-tensor (SVT) decomposition, the perturbations can be separated as

Bi ≡ B̂i + ∂iB , hij ≡ 2Cδij + 2(∂i∂j −
1

3
δij∇2)E + 2∂(iÊj) + Êij ,

fi = ∂if + f̂i , mij = ∂im̂j − ∂jm̂i + ϵijk∂
km,

where ∂iB̂i = ∂iÊi = ∂iÊij = 0, ∂if̂i = ∂im̂
i = 0 and Êi

i = 0. It turns out that f and one combination of f̂i
and m̂i are pure gauge and drop out of the equations of motion.

• Matter perturbations:
The components of Tµν have the standard perturbative expansions,

ρ = ρ̄ + δρ , p = p̄ + δp , δT i
0 ≡ (ρ̄ + p̄) vi , pπij ≡ T i

j −
1

3
δijT

k
k ,

while the perturbed source terms for the B-field and dilaton take the form

Θ(2) ≡ Jidx
i ∧ dt +

1

2
ϵijkIkdxi ∧ dxj , σ = σ̄ + δσ .

Under an SVT decomposition, with ∂iv̂
i = ∂iπ̂i = 0, ∂iĴi = ∂iÎi = 0, ∂iπij = 0 and π̂ii = 0, expand

vi = v̂i + ∂iv , πij = (∂i∂j −
1

3
δij∇2)πT + ∂(iπ̂j) + π̂ij , Ji = ∂iJ + Ĵi , Ii = ∂iI + Îi .

• Perturbed equations of motion:
We obtained the equations of motion for linear perturbations in DFT cosmology. For the scalar perturbations,
we find six non-trivial equations that separate to damped oscillator equations for h = 0 [9], but non-vanishing
H-flux induces couplings between the different components. In the superhorizon limit, the equations can be
solved for various known analytic solutions, and the evolution of fluctuations is adiabatic in this limit.

• Perturbed conservation equations:
Expanding in Fourier modes, ∂i → iki, the two non-trivial perturbed conservation equations are

0 = δρ′ + 3aH (δρ + δp) + ϕ̄′δσ + δϕ′σ̄−k2 (ρ̄ + p̄) v ,

0 = [(ρ̄ + p̄) (v +B)]′ + 4aH [(ρ̄ + p̄) (v +B)] + δp + (ρ̄ + p̄)A−2

3
k2p̄πT +

h

a4
I − σ̄δϕ .

When σ̄ = 0 = δσ and for k → 0, the former implies that adiabatic superhorizon perturbations are conserved.
However, when σ̄ or δσ are nonzero, this is no longer true in general. Nevertheless, under certain conditions
(e.g. constant w and λ), a conserved variable may be identified by integrating the first equation.
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