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Introduction

Modern-day cosmology’s de-
scription of the dark sector is
incomplete.

Different observations of the
Universe disagree on the val-
ues of parameters, e.g. H0
tension.

Recent results from DESI even
hint at behaviour beyond flat
ΛCDM [3].

We take three supernovae
compilations (Union3 [5], Pan-
theon+ [1], DES Year 5 [2]),
and test their mutual consis-
tency in an attempt to detect
additional sources of system-
atics or behaviour beyond the
standard model.

Methods I

We start by expanding the
parameter space.

Take dataset A; it gives rise
to “Template Function” A
that contains information about
cosmology and the dataset.

We deform this using a poly-
nomial basis, parametrized by
Ci.

Cross-checking with the other
datasets, we constrain these
parameters to determine how
consistent dataset A is with
the other two, at the data level.

Methods II

We use two types of template
functions:

1) The ΛCDM model best fit to
the dataset.
2) An “iterative smoothing”
function.

The latter is a model-
independent approach which
produces a function containing
the characteristics of the data.

This secondary analysis is use-
ful, since assuming one cos-
mological model may limit the
sensitivity of the consistency
test if the true model is different.

Conclusion

There is a high level of
consistency between all
three datasets consid-
ered.

With both types of tem-
plate functions, no defor-
mations are favoured at
more than ∼ 2 σ.

In all cases, it is possi-
ble to find regions within
the extended parameter
space that can produce
all three datasets simul-
taneously, at 1− 2σ.
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Supernova Cosmology

Type 1a supernova light curves can be standardised to determine their intrinsic luminosity.
This allows us to measure distances in cosmology [4]:
Distance Modulus→ µ(z) = m(z)−MB = 5 log

(
DL(z)
10pc

)
← Luminosity Distance

Dataset #Supernovae z range

Union3 [5] 2087 (22 nodes) 0.05 < z < 2.26

DES Year 5 [1] 194 (z < 0.1) + 1635 0.025 < z < 1.3

Pantheon+ [2] 1550 0.01 < z < 2.26

Fig. 1: Details of supernova datasets used in the analysis.

Fig. 2: Best fit m(z) results for each of the three datasets.

Using the flat ΛCDM model to fit these data, we obtain our first kind of “Template Function”,
containing information particular to each dataset, that we compare in the context of the other
datasets.

Expanding the Parameter Space

We use a Chebyshev polynomial basis Ti(x) to create Crossing Functions, that deform the
Template Functions. These are parametrized by coefficients C i, as shown in Fig. 3.

Fig. 3: Examples of deformations to a Template Function (black) using the Chebyshev basis.

Model-Independent Template functions

Our second Template Function is generated using a process called Iterative Smoothing, that
produces a function following the data, but independent of cosmological model parameter input.

Fig. 4: Result of Iterative Smoothing procedure for Union3 data, showing effect of smoothing width ∆.

χ2 - statistic of interest

Fig. 5: ∆χ2 achieved from various deformations of each template function to fit all three datasets.

The improvement in χ2 surpasses each dataset’s own best fit (dashed lines) at low order (0 ∼ 1).
This indicates the data are receptive to different template functions, and the parametrization is
effective in revealing useful extended behaviours in the data. But, if we want to gauge the level of
consistency, we need to compare the types and degrees of deformations.
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Crossing Statistics [7]

The deformations are performed according to the following prescription, where we multiply by a linear
combination of Chebyshev polynomials, truncated at finite order N:

µDEFORMED(z) = µTEMPLATE(z)
N∑
i=0

CN
i Ti(z̃), (1)

The results in Fig. 5 suggest that at least 0th or 1st order are required. We should also ensure that the
resulting deformed function remains physically realistic.

The extended parameter space now contains a number of Crossing Hyperparameters, Ci, up to
some chosen maximum order. These will determine the extent and type of deformations applied
to the Template Function for some dataset A. We sample in Ci, minimising the χ2 calculated for a
particular dataset B, to determine the posteriors of the parameter values.

Each Template Function A is then tested in the context of all the datasets to determine the level of
consistency.

Iterative Smoothing [6]

In order to produce the second, model-independent form of the Template Function, we start from an ini-
tial guess for the distance modulus µ0(zi) for datapoint redshifts zi. In this case we use the flat ΛCDM
best fit from the dataset; though, after sufficiently many iterations, the result is insensitive to this choice.

In the kth iteration, the following calculations are performed:

The Residual Vector: (δµk)i = µk(zi)− µdata(zi) (2)

The Next Guess: µk+1(z) = µk(z) +
δµT

k · C−1 ·W(z)

1T · C−1 ·W(z)
(3)

where the residuals are smoothed according to the covariance matrix C and a window function:

W i(z) = e

− ln2
(

1+z
1+zi

)
2∆2


(4)

(see Fig. 4 for some examples of the window function for various values of smoothing width ∆).
Iterative smoothing provides a function passing through the data that, while not judged for its fit, is
at least a viable functional form, which does not rely on a cosmological model or parameters.

Contour plots (∼ 0 min)

In Fig. 6 we plot the posteriors from one example of the analysis - we use the Template Function from
Union3, fit to all 3 datasets over the redshift range of DES Year 5 supernovae (DES-SN5YR). From left
to right, we consider three cases with 1, 2 and 3 added degrees of freedom, by setting the respective
maximum orders of the Crossing Functions with non-zero Ci to i = 0, 1 and 2.

Fig. 7: Contour plots of the Crossing Hyperparameters for Union3 ΛCDM Template Function.

The point at C0 = 1 and Cj ̸=0 = 0 is the fiducial point corresponding to the undeformed Template
Function; in this case the flat ΛCDM best fit from Union3.

The samples from all datasets are consistent to within about 2σ with this point, with DES being
slightly further away. However, it is always possible to find an overlapping space of preferred
deformations, where all three datasets may be simultaneously realised, at the 1 − 2σ level.

This suggests a high level of mutual consistency within the framework of our analysis.

In continuation of this work we hope to test the sensitivity to particular forms of systematics, as well
as examine more closely the various kinds of deformations that are preferred, and what implications
they may have for cosmology.


