

Search for Dark Matter decay and annihilation using γ ray observation by Tibet AS_{γ} and LHAASO

Based on arXiv:2105.05680 (PRD Letter) & Dubey et al (In Prep.) Abhishek Dubey* , Tarak Nath Maity, Akash Kumar Saha, Ranjan Laha Centre for High Energy Physics, IISc, Bangalore *Email: abhishekd1@iisc.ac.in

Fig: 6A Upper limit on γ rays flux coming from outside the Galactic plane ($|b|$) 20 deg.) (credit: Neronov et al. 2021)

Our Results

Conclusion

DM Substructure Boost for annihilation

Since the annihilation rate depends on the dark matter density squared (and $\langle \rho^2 \rangle \ge \langle \rho^2 \rangle$), the presence of the subhalos will boost the gamma-ray signatures from dark matter annihilation. It is given by $\mathit{B}_{\mathrm{s}\mathrm{h}}$ (Boost factor) .

Fig:1A Dark matter (credit : AKS and NIST)

Observations by Tibet AS_{γ} and LHAASO

Fig:4 Diffuse gamma rays flux observaed by Tibet AS_y (credit: M. Amenomori et al. (Tibet AS_y Collaboration) 2021)

orainary matter

- DM can decay or annihilates into various Standard Model (SM) final states, which may further decay or hadronize, and produce high energy gamma rays.
- High-energy electrons and positrons generated in these processes can upscatter low-energy background photons (e.g., from the cosmic microwave background, starlight, and infrared) through inverse Compton scattering (ICS), producing secondary gamma rays.
- Recently, the Tibet AS_{γ} and LHAASO experiments have detected diffuse gamma-ray flux in the Milky Way, offering a valuable opportunity to search for dark matter signals in this high-energy regime.

• In our analysis, we have taken both primary and inverse Compton scattering gamma ray flux from Galactic and Extragalactic domain into consideration.

- Various astrophysical and cosmological observations indicate that the majority of matter in the universe is non-baryonic in nature, commonly referred to as dark matter (DM).
- One way to probe the non-gravitational nature of DM is indirect detection where we try to detect the annihilating or decaying signature of DM via astrophysical measurements. This is a promising way to discover various different DM candidates.

Fig:1B Primary and Secondary γ rays from DM decay and annihilation (Credit:Weniger)

γ rays flux from DM decay and annihilation

- \bullet We have obtained constraints on dark matter lifetime and annihilation cross section for different final states using Tibet AS_y and LHAASO observation.
- We have studied the effect of inverse Compton scattering and dark matter substructures which helps put better constrain dark matter parameters.
- We get the most stringent constraints in large region of parameter space for both dark matter decay and annihilation.

Attenuation factor, arising due to the interaction of these high energy γ rays to low energy photons and

 $\frac{d\Phi^G}{dE_\gamma} = \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \frac{dN}{dE_\gamma} \int_0^\infty ds \rho^2(s,b,l) B_{sh}(s,b,l) e^{-\tau_{\gamma\gamma}(E_\gamma,s,b,l)}$ Boost factor for DM annihilation due to DM substructures

DM decay

$$
\frac{d\Phi^G}{dE_\gamma} = \frac{1}{4\pi m_\chi \tau_\chi} \frac{dN}{dE_\gamma} \int_0^\infty ds \rho(s,b,l) e^{-\tau_{\gamma\gamma}(E_\gamma,s,b,l)}
$$

Intrinsic spectrum of γ rays coming from different SM

DM annihilation

Gamma ray flux observed from DM decay to different Standard model final states will be

Fig: 6B Galactic regions of obsevation by Tibet AS_v and LHAASO

Fig:5 Diffuse gamma rays flux observaed by LHAASO (credit: LHAASO Collaboration)

• Due to the better sensitivity of Tibet-AS_γ and higher energy reach compared to MILAGRO, HAWC, and ARGO-YBJ and also more efficient suppression of background EAS produced by protons and atomic nuclei, Tibet-AS_γ observations can be used to constrain the γ ray flux from the sky outside the Galactic plane ($|b| > 20$ deg.).

Tibet AS_{γ} and LHAASO experiments

DM density profile in our

 m_r = DM mass, τ_r = DM lifetime, $\langle \sigma v \rangle$ = DM annihilation cross section E_{γ} = energy of prompt photons.

galaxy, which we have taken as NFW profile pair produce

Pointing accuracy $\sim 0.1^{\circ}$

Angular resolution $\sim 0.3^{\circ}$

Energy resolution $< 20\% \ @ \ 6 \text{TeV}$

Number of detectors: $0.5 \text{ m}^2 \times 597$, Effective area: ~ 65.700 m^2 Angular resolution: $\sim 0.5^{\circ}$ @ 10TeV and $\sim 0.2^{\circ}$ @ 100 TeV

Energy resolution: $\sim 40\%$ @ 10 TeV and $\sim 20\%$ @ 100 TeV

Fig:3B LHAASO