

Search for Dark Matter decay and annihilation using γ ray observation by Tibet AS_y and LHAASO

Based on arXiv:2105.05680 (PRD Letter) & Dubey et al (In Prep.) Abhishek Dubey*, Tarak Nath Maity, Akash Kumar Saha, Ranjan Laha Centre for High Energy Physics, IISc, Bangalore *Email: abhishekd1@iisc.ac.in

Dark Matter and Dark Matter Indirect detection

- Various astrophysical and cosmological observations indicate that the majority of matter in the universe is non-baryonic in nature, commonly referred to as dark matter (DM).
- One way to probe the non-gravitational nature of DM is indirect detection where we try to detect the annihilating or decaying signature of DM via astrophysical measurements. This is a promising way to discover various different DM candidates.

Observations by Tibet AS_v and LHAASO

Fig:4 Diffuse gamma rays flux observaed by Tibet AS_{ν} (credit: M. Amenomori et al. (Tibet AS_{ν} Collaboration) 2021)

ordinary matter

Fig:1A Dark matter (credit : AKS and NIST)

- DM can decay or annihilates into various Standard Model (SM) final states, which may further decay or hadronize, and produce high energy gamma rays.
- High-energy electrons and positrons generated in these processes can upscatter low-energy background photons (e.g., from the cosmic microwave background, starlight, and infrared) through inverse Compton scattering (ICS), producing secondary gamma rays.
- Recently, the Tibet AS_{γ} and LHAASO experiments have detected diffuse gamma-ray flux in the Milky Way, offering a valuable opportunity to search for dark matter signals in this high-energy regime.

Fig:1B Primary and Secondary γ rays from DM decay and annihilation (Credit:Weniger)

γ rays flux from DM decay and annihilation

Gamma ray flux observed from DM decay to different Standard model final states will be

DM decay

$$\frac{d\Phi^G}{dE_{\gamma}} = \frac{1}{4\pi m_{\chi} \tau_{\chi}} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho(s, b, l) e^{-\tau_{\gamma\gamma}(E_{\gamma}, s, b, l)}$$

Intrinsic spectrum of γ rays coming from different SM

Attenuation factor, arising due to the interaction of DM density profile in our these high energy γ rays to low energy photons and

Fig:5 Diffuse gamma rays flux observaed by LHAASO (credit: LHAASO Collaboration)

• Due to the better sensitivity of Tibet-AS_γ and higher energy reach compared to MILAGRO, HAWC, and ARGO-YBJ and also more efficient suppression of background EAS produced by protons and atomic nuclei, Tibet-AS_{γ} observations can be used to constrain the γ ray flux from the sky outside the Galactic plane (|b| > 20 deg.).

galaxy, which we have taken pair produce as NFW profile

DM annihilation

 $\frac{d\Phi^G}{dE_{\gamma}} = \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \frac{dN}{dE_{\gamma}} \int_0^\infty ds \rho^2(s,b,l) B_{sh}(s,b,l) e^{-\tau_{\gamma\gamma}(E_{\gamma},s,b,l)}$ Boost factor for DM annihilation due to DM substructures

 $m_x = DM$ mass, $\tau_x = DM$ lifetime, $\langle \sigma v \rangle = DM$ annihilation cross section $E_{\nu\nu}$ = energy of prompt photons.

• In our analysis, we have taken both primary and inverse Compton scattering gamma ray flux from Galactic and Extragalactic domain into consideration.

DM Substructure Boost for annihilation

Since the annihilation rate depends on the dark matter density squared (and $\langle \rho^2 \rangle \geq \langle \rho \rangle^2$), the presence of the subhalos will boost the gamma-ray signatures from dark matter annihilation. It is given by B_{sh} (Boost factor).

Fig: 6B Galactic regions of obsevation by Tibet AS_{γ} and LHAASO

Fig: 6A Upper limit on γ rays flux coming from outside the Galactic plane (|b| >20 deg.) (credit: Neronov et al. 2021)

Our Results

 10^{29}

 $\begin{bmatrix} s \end{bmatrix}$

 \mathcal{X}

 10^{28}

 10^{27}

Ļ

 $v \leq cm^3$.

arXiv:2105.05680 (PRD Letter) + Dubey et al. (In Prep.)

10^{-2} 10^{-23} LHAASO Dwarf Galaxy ----- LHAASO Dwarf Galaxy - Our Constraints (Tibet AS_{γ}) - Our Constraints (Tibet AS_{γ}) — Our Constraints (Neronov 21) — Our Constraints (Neronov 21) — Our Constraints (LHAASO) — Our Constraints (LHAASO) 10^{-24} 10^{-24} 10 10^{8} 10^{8} 10° 10^{6} 10 m_{χ} [GeV] m_{χ} [GeV]

Tibet AS_v and LHAASO experiments

Number of detectors: $0.5 \text{ m}^2 \times 597$, Effective area: ~ 65,700 m² Angular resolution: $\sim 0.5^{\circ}$ @ 10TeV and $\sim 0.2^{\circ}$ @ 100 TeV Energy resolution: $\sim 40\%$ @ 10 TeV and $\sim 20\%$ @ 100 TeV

Pointing accuracy $\sim 0.1^{\circ}$ Angular resolution $\sim 0.3^{\circ}$ Energy resolution < 20% @ 6TeV

Conclusion

- We have obtained constraints on dark matter lifetime and annihilation cross section for different final states using Tibet AS_{γ} and LHAASO observation.
- We have studied the effect of inverse Compton scattering and dark matter substructures which helps put better constrain dark matter parameters.
- We get the most stringent constraints in large region of parameter space for both dark matter decay and annihilation.