OKAVLI PRUU

Primordial Black Hole Formation from Power Spectrum with Finite-width Jianing Wang (ITP.CAS)

Shi Pi, Misao Sasaki, Volodymyr Takhistov, Jianing Wang (in preparation)

- PBH mass is roughly given by the smoothing scale (horizon scale) according to Hoop conjecture $\mathscr{C} := \frac{2\delta M}{R(r)} > 1$
- Smoothing process needs to ensure a healthy defined
- Picking up PBHs of different masses with corresponding smoothing scales

$$f_{\text{PBH}}(M_{\bullet}) \sim \int \frac{\mathrm{d}R_{s}}{R_{s}} \int \mathrm{d}K \int \mathrm{d}\mu$$
$$\cdot \delta_{\text{D}} \left(\ln \frac{M_{\bullet}}{M\left(R_{s}, K, \mu\right)} \right) \frac{M\left(R_{s}, K, \mu\right) N_{\text{PBH}}\left(R_{s}, K, \mu\right)}{\Omega_{\text{DM}}h^{2}}$$

Peak's theory method can enhance

volume $\propto R_s^3$

• As long wavelength components gradually enter the horizon, the peak gradually widens and the over-density region becomes larger

the formation of PBH, but not in a huge amount!!!

*Comparison of different methods for monochromatic power

	Method	$\mathscr{A}_{\mathscr{R}}(f_{\rm PBH}^{\rm tot} = 1)$
	Previous Peak's theory method [N.Kitajima, et al, JCAP, (2021)]	5.33×10^{-3}
	Extended Press-Schechter method	6.31×10^{-3}
	Peak's theory method	1.55×10^{-2}
	Press-Schechter method	2.78×10^{-2}
) ²⁰	$= \Delta = 0.0$ $= \Delta = 0.0, \text{ Previous PTM}$ $= \Delta = 0.4$ $= \Delta = 1.0$ $= \Delta = 0.4$ $= \Delta = 1.0$ $= \Delta = 0.0$	$ \begin{array}{ c c c c c } \hline & \Delta = 0.0 \\ \hline & \Delta = 0.1 \\ \hline & \Delta = 0.4 \\ \hline & \Delta = 1.0 \\ \hline & \Delta = 0.4 \end{array} $

• Smoothing scale should always be larger than the over-density scale $r_m/R_s \leq O(1)$

Broad power spectrum can suppress the PBH formation.

Broader power spectrum produces a broader PBH mass spectrum.

Kashiwa-no-ha Därk Matter and Cosnology Symposium

wangjianing@itp.ac.cn