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Critical curve and caustic

lens (dark matter)

source β

image θ

lens equation: mapping btw source and image

⃗β = ⃗θ − ⃗α ( ⃗θ)

magnification µ

μ = det ( ∂ ⃗β

∂ ⃗θ )
−1

critical curve θc caustic βc

det ( ∂ ⃗β

∂ ⃗θ )
⃗θ= ⃗θc

= 0 ⃗βc = ⃗β( ⃗θc)

near critical curve/caustic → high magnification 6



Caustic 
Brocken Inaglory 

• concentration of reflected or 
refracted light

• in gravitational lensing, it is 
where

    ⎼ magnification of a point 
       source formally diverges
    ⎼ a pair of multiple images 
       appear/disappear
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Discovery of Earendel

• single star at z=6.2

• magnification 
𝜇~10000 (?)
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are shown in Fig. 2. We find the star to be within 0.1″ in approximately 
80% of models, and the maximum distance reaches 0.4″.

We then derived tighter constraints on the distance to the critical 
curve on the basis of our observation of only a single unresolved object. If 
Earendel were farther from the critical curve, we would see two multiple 
images, as with clumps 1.1a and 1.1b. The single image means either that its 
two images are spatially unresolved or that microlensing is suppressing 
the flux of one image. We deem the latter unlikely, given that this cluster 
has an optically thick microlensing network at the location of the star (see 
Methods section ‘Microlensing simulations’ for details). In this configu-
ration, there are no pockets of low magnification which could hide one 
of the images, as the microcaustics all overlap. Therefore we conclude 
that the two lensed images are unresolved in the current HST WFC3/IR 
imaging. This is consistent with our original lens model-independent 
interpretation, suggesting it is directly on the critical curve.

We then use the fact that the two images of the star are unresolved 
to determine the maximum allowed distance to the critical curve. We 
analyse super-sampled drizzled images and find that two lensed images 
would be spatially resolved if they were separated by 0.11″ along the 
arc (see Extended Data Fig. 4). Moving each image 0.055″ along the 
arc puts them less than 0.036″ from the critical curve, given the angle 
between the arc and critical curve in the various lens models (see Meth-
ods section ‘Magnification and size constraints’ for details). Maximum 
distances to the critical curve (Dcrit) for each lens model are tabulated 
in Table 1. This is a more precise determination than is possible with 
the weakly constrained lens models alone.

Using the maximum allowed separation, we can calculate the mini-
mum magnification of the lensed star. In the vicinity of the critical 
curve, magnifications are inversely proportional to the distance to 
the critical curve:

µ µ D= / (1)0 crit

where Dcrit is expressed in arcseconds and µ0 is a constant that varies 
between lens models18. The value of µ0 depends on the slope of the 

Q17

Q19

lens potential, with flatter potentials yielding higher values of µ0 and 
thus higher magnifications for a given distance (that is, LTM), whereas 
steeper potentials give lower magnifications (that is, Lenstool). Owing 
to the paucity of lensing constraints, we can only determine the slope 
of the potential to within a factor of six. However, using multiple lens 
models, including two Glafic models with one flatter (lower concentra-
tion c = 1) and one steeper (c = 7) potential, we are able to cover the full 
range of possible outcomes.

On the basis of this analysis, we derive magnification estimates, sum-
marized in Table 1. We note that the magnification calculated from 
equation 1 accounts for only one of the two unresolved images. We 
therefore double this value to get the total magnification from the 
source to the unresolved image. At the nominal estimated distances 
Dcrit, the magnification estimates range from 2µ ≈ 1,400 (Lenstool) to 
2µ ≈ 8,400 (LTM). Given the uncertainty on Dcrit, these values may be 
0.7–5.0 times smaller or larger (68% confidence). Thus the full range 
of likely magnifications is 2µ = 1,000–40,000. This factor-of-40 uncer-
tainty is much larger than that found for lensed galaxies with typical 
magnifications of a few19, owing to the rapid changes in magnification 
that occur in the vicinity of lensing critical curves. Future observations 
will substantially shrink these error bars.

Lower magnifications (at larger Dcrit) are excluded because Earendel 
is unresolved. Higher magnifications are allowed as the star approaches 
the caustic. However, on the basis of the cluster stellar mass density in the 
vicinity of the arc (Extended Data Fig. 5, Extended Data Table 2 and Methods 
section ‘Diffuse light calculation’) we find that the network of microlensing 
caustics in the vicinity of the star is optically thick (see Methods section 
‘Magnification and size constraints’). Given this microlensing configura-
tion, we estimate the maximum magnification to be of the order of µ ≲ 105, 
even for a transient caustic crossing18,20–22. Microlensing also has the effect 
of causing fluctuations in observed brightness as the lensed star traverses 
the microcaustic network. However, owing to the optically thick microlens-
ing network, we find a 65% probability of the observed brightness staying 
within a factor of two over the 3.5-year span of our observations (Extended 
Data Fig. 6). This is consistent with our observed factor ~1.4 variation (see 
Methods section ‘Microlensing simulations’ for details).

Our strongest evidence that Earendel is an individual star or binary 
instead of a star cluster comes from our derived 1σ upper limit on its 
radius. This limit ranges from r < 0.09 pc to r < 0.36 pc, depending on 
the lens model. We derive these limits by comparing sheared Gaussian 
images of various widths to the super-sampled images to determine 
what sizes are consistent with our observations of a spatially unresolved 
object (Methods section ‘Magnification and size constraints’).
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Fig. 1 | Labelled colour image of WHL0137-zD1. The Sunrise Arc at z = 6.2 is the 
longest lensed arc of a galaxy at z > 6, with an angular size on the sky exceeding 
15 arcseconds. The arc is triply imaged and contains a total of seven star-forming  
clumps; the two systems used in lens modelling are circled, with system 1.1 in 
cyan and system 1.7 in magenta. The highly magnified star Earendel is labelled 
in green. The best-fit lensing cluster critical curve from the LTM model is shown 
in red, broken where it crosses the arc for clarity. The colour composite image 
shows the F435W filter image in blue, F606W + F814W in green, and the full 
WFC3/IR stack (F105W + F110W + F125W + F140W + F160W) in red.
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Fig. 2 | Strong lensing critical curves. Our best-fit lens models all produce 
critical curves that cross the lensed star Earendel within 0.1″. Additionally, 
100 iterations of our LTM model drawn from the MCMC (thin tan lines) are 
similarly consistent, albeit with greater variance, all crossing the arc within 0.4″ 
of the lensed star. Critical curves are shown for LTM (red solid), Lenstool 
(purple dashed), Glafic (cyan dash-dot), and WSLAP+ (yellow dotted).
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Lower magnifications (at larger Dcrit) are excluded because Earendel 
is unresolved. Higher magnifications are allowed as the star approaches 
the caustic. However, on the basis of the cluster stellar mass density in the 
vicinity of the arc (Extended Data Fig. 5, Extended Data Table 2 and Methods 
section ‘Diffuse light calculation’) we find that the network of microlensing 
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of causing fluctuations in observed brightness as the lensed star traverses 
the microcaustic network. However, owing to the optically thick microlens-
ing network, we find a 65% probability of the observed brightness staying 
within a factor of two over the 3.5-year span of our observations (Extended 
Data Fig. 6). This is consistent with our observed factor ~1.4 variation (see 
Methods section ‘Microlensing simulations’ for details).

Our strongest evidence that Earendel is an individual star or binary 
instead of a star cluster comes from our derived 1σ upper limit on its 
radius. This limit ranges from r < 0.09 pc to r < 0.36 pc, depending on 
the lens model. We derive these limits by comparing sheared Gaussian 
images of various widths to the super-sampled images to determine 
what sizes are consistent with our observations of a spatially unresolved 
object (Methods section ‘Magnification and size constraints’).
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critical curves that cross the lensed star Earendel within 0.1″. Additionally, 
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Interpretation of caustic crossings

• caustic crossings look very simple, yet in fact 
they are not that simple because the mass 
distribution is not completely smooth

• non-smoothness due to stars responsible for 
intra-cluster star (ICL)

• tidal stripping of cluster 
    member galaxies explains 
    ICL
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‘Destruction’ of critical curve

Johan Richard model

high magnification for lower magnification with the surround-
ing area in the lens plane. As more microlenses are added, the
disruption becomes more serious, and at some point between
f= 0.003 and f= 0.01 in Figure 9 the CC itself transforms into
a network of micro-CCs. The extension of this network around
the main CC marks the region where microlensing events are
more likely to be observed. An interesting consequence is that
the typical magnification one would expect is changed by the
addition of microlenses. In Figure 10 we show the median of
the distribution of magnifications (of individual micro-images)
computed at different distances from the position of the main
CC. For each distance, the distribution of magnifications and its
median are computed in an area of 1.9× 0.5 mas2. Adding
microlenses thus results in a reduction of the typical
magnification of micro-images that one would have obtained
without them. This median magnification, however, cannot be
normally observed, since the lensed image forms (typically) an
unresolved train of micro-images and what we observe is the
total flux of all micro-images (an exception being at low optical
depth, where the the total flux is usually given by one micro-
image). We show later, however, that if the lens plane is
populated by massive microlenses (a few tens of solar masses),
the separation between micro-images can reach a few
milliarcseconds, opening the door to future high-resolution
observations of the individual micro-images.

This change in the magnification is also evident in Figure 5,
where we display a small region around the main CC in the
case of the smooth lens compared with the magnification
pattern when microlenses are added (diagonal band). The figure
also shows a lensed background object (with ∼0.01 pc radius),
or train of micro-images, at the moment of maximum
magnification. The lensed image breaks up into multiple
smaller components. For smaller background sources (such as a

large star), the lensed image would break up into even more
smaller pieces.
When f is sufficiently small, the effect of the microlenses is

small and the magnification behaves like in the smooth lens
model case, except when we approach the CC. At short
distances from the CC, even small microlenses can have a
significant impact on the magnification pattern. As f grows, the
range at which the CC gets disrupted grows as well. For values
of f≈ 0.001 the disruption is still significant up to scales of a
few milliarcseconds. In this situation, if macro-images are
being formed on both sides of the main CC at a distance of a
few milliarcseconds, a telescope like the Hubble Space
Telescope (HST) observing the unresolved macro-images

Figure 9. Disruption of the CC as a function of microlens surface mass density. Each panel shows the CC region when a population of microlenses with Σ=fΣo is
present. The case f=1 corresponds to the model of Spera et al. (2015) at the position of Icarus. The yellow lines show the approximation in Equation (15). The last
panel at bottom does not show the yellow line since it extends beyond the boundaries of the plot. The total surface mass density (i.e., smooth plus microlens) is the
same in all panels.

Figure 10.Median of the magnification (of micro-images in the lens plane) as a
function of distance from the main CC (negative distances mean they are
measured toward the left of the CC and positive toward the right). The black
line corresponds to the smooth model (no microlenses) and the red line is for
the case when microlenses are added (with 4 x :M7 pc−2).

12

The Astrophysical Journal, 857:25 (27pp), 2018 April 10 Diego et al.

high magnification for lower magnification with the surround-
ing area in the lens plane. As more microlenses are added, the
disruption becomes more serious, and at some point between
f= 0.003 and f= 0.01 in Figure 9 the CC itself transforms into
a network of micro-CCs. The extension of this network around
the main CC marks the region where microlensing events are
more likely to be observed. An interesting consequence is that
the typical magnification one would expect is changed by the
addition of microlenses. In Figure 10 we show the median of
the distribution of magnifications (of individual micro-images)
computed at different distances from the position of the main
CC. For each distance, the distribution of magnifications and its
median are computed in an area of 1.9× 0.5 mas2. Adding
microlenses thus results in a reduction of the typical
magnification of micro-images that one would have obtained
without them. This median magnification, however, cannot be
normally observed, since the lensed image forms (typically) an
unresolved train of micro-images and what we observe is the
total flux of all micro-images (an exception being at low optical
depth, where the the total flux is usually given by one micro-
image). We show later, however, that if the lens plane is
populated by massive microlenses (a few tens of solar masses),
the separation between micro-images can reach a few
milliarcseconds, opening the door to future high-resolution
observations of the individual micro-images.

This change in the magnification is also evident in Figure 5,
where we display a small region around the main CC in the
case of the smooth lens compared with the magnification
pattern when microlenses are added (diagonal band). The figure
also shows a lensed background object (with ∼0.01 pc radius),
or train of micro-images, at the moment of maximum
magnification. The lensed image breaks up into multiple
smaller components. For smaller background sources (such as a

large star), the lensed image would break up into even more
smaller pieces.
When f is sufficiently small, the effect of the microlenses is

small and the magnification behaves like in the smooth lens
model case, except when we approach the CC. At short
distances from the CC, even small microlenses can have a
significant impact on the magnification pattern. As f grows, the
range at which the CC gets disrupted grows as well. For values
of f≈ 0.001 the disruption is still significant up to scales of a
few milliarcseconds. In this situation, if macro-images are
being formed on both sides of the main CC at a distance of a
few milliarcseconds, a telescope like the Hubble Space
Telescope (HST) observing the unresolved macro-images

Figure 9. Disruption of the CC as a function of microlens surface mass density. Each panel shows the CC region when a population of microlenses with Σ=fΣo is
present. The case f=1 corresponds to the model of Spera et al. (2015) at the position of Icarus. The yellow lines show the approximation in Equation (15). The last
panel at bottom does not show the yellow line since it extends beyond the boundaries of the plot. The total surface mass density (i.e., smooth plus microlens) is the
same in all panels.

Figure 10.Median of the magnification (of micro-images in the lens plane) as a
function of distance from the main CC (negative distances mean they are
measured toward the left of the CC and positive toward the right). The black
line corresponds to the smooth model (no microlenses) and the red line is for
the case when microlenses are added (with 4 x :M7 pc−2).

12

The Astrophysical Journal, 857:25 (27pp), 2018 April 10 Diego et al.

w/o ICL star

w/ ICL stars

6

parametrize it as

βh = β0

(

θh
arcsec

)2

. (32)

From these equations we have µt = µh(βh/β0)−1/2 for the
macro model magnification of one of the merging pair of
images.

The maximum magnification (equation 26) of caustic
crossing is larger for larger µt, which suggests that stars
that are closer to the critical curve can have higher mag-
nifications. However, [26] (see also [27]) argued that, even
a small fraction of point mass lenses, significantly changes
the asymptotic behavior of the macro model magnifica-
tion toward the critical curve. This is because the Ein-
stein radius of the point mass lens depends on µt as
∝ √

µt, and hence for very large
√
µt the Einstein radii

for different point mass lenses overlap, even when the
number density of point mass lenses is small. As shown
by ray-tracing simulations in [26], beyond this “satura-
tion” point the source breaks into many micro-images,
and as a result it loses its sensitivity to the source posi-
tion with respect to the macro model caustic. Therefore,
the macro model magnification in fact does not diverge
as predicted by equation (31), but saturates at a finite
value.

To estimate where the saturation happens, [26] consid-
ered the optical depth τ defined by

τ =
Σ

M
π (

√
µtθEDol)

2 , (33)

where Σ is the surface mass density of the point mass
component. Here we implicitly assumed that the point
masses have the same massM , although we note that this
approximation is reasonably good when compared with
the realistic ray-tracing simulations. [26] argued that the
saturation happens when τ ≈ 1. From the definition of
the Einstein radius (equation 3), it is found

τ ∝ µtΣ, (34)

which indicates that the maximum macro model magni-
fication where the saturation happens is inversely pro-
portional to the surface mass density of the point mass
component Σ, and does not depend on the mass M . This
means that, in order to achieve high peak magnifications
(equation 26), lower Σ is preferred. Specifically, we can
compute the maximum macro model magnification by
setting τ = 1 in equation (33) as

µt,max ≈
M

πΣ (θEDol)
2 . (35)

Since the surface mass density is proportional to M as-
suming a single mass component, M/Σ does not depend
on mass M .

We can consider another condition for the saturation
from the Einstein radius (see [27]). Even for τ ≪ 1,
when the distance to the macro model critical line, θh,

becomes comparable to the Einstein radius of the point
mass lens, the critical curves by the point mass lens merge
with those from the macro lens model, and our basic as-
sumption breaks down. Therefore, to have enough mag-
nifications by the point mass lens, we need the following
condition.

√
µtθE ! θh. (36)

Using equation (31), this condition is rewritten as

θE !
µh

µ3/2
t

. (37)

The similar condition in the source plane is

θE√
µt

! βh, (38)

which results in

θE !
β0µ2

h

µ3/2
t

. (39)

In practice equations (37) and (39) give quite similar con-
ditions, so in what follows we consider only equation (37).
From this condition, we have another condition for the
maximum magnification of the macro mass model as

µt,max ≈
(

µh

θE

)2/3

, (40)

which indicates µt,max ∝ M−1/3. The true maximum
macro magnification is given by the smaller of µt,max

given in equations (35) and (40).

C. Light curve timescales

There are important time scales that characterize caus-
tic crossing events. One is the so-called source crossing
time defined by

tsrc =
βR

u
, (41)

where βR is the angular size of the source in the source
plane, and u is the source plane velocity as defined in
equation (23). This source crossing time determines the
timescale of the light curve near the peak. Another im-
portant time scale is given by the time to cross between
caustics. Using the width of the caustics, βw (equa-
tion 13), it is expressed as

tEin =
βw

u
, (42)

which gives the typical timescale between multiple caus-
tic crossing events. The former timescale tsrc does not
depend on the lens property, whereas the latter timescale
tEin scales with the lens mass as ∝ M1/2.

τ≳1 → saturation

• destruction of critical curve due to overlapping Einstein 
radii of ICL stars
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Simulation
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Caustic crossing lightcurves
Icarus(-like)
micro-caustic
crossing by an

ICL star
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position, respectively, magnifications derived from CC-
train correspond to those for point sources without any
finite source size e↵ects.

In addition to our detailed ray-tracing simulations with
CCtrain, we adopt public magnification maps provided
by Gerlumph [16] for our study. The Gerlumph sim-
ulations are based on the inverse ray-tracing simulation,
for which the magnification is calculated by the number
of the inverse rays entered in a single pixel on the source
plane. Therefore, the grid size of the source plane can be
interpreted as an e↵ective source size for the Gerlumph
simulations.

For both CCtrain and Gerlumph, we consider the
situation where the microlenses are distributed randomly
in the background with constant convergence and shear
which satisfies tot = �tot, which is the same as in
Sec. III. Note that Gerlumph uses the smooth fraction
s, which is related to the fraction of the microlenses by
f? = 1 � s. For CCtrain, for a given parameter setup,
we change the distribution of the microlenses and obtain
many realizations as summarized in Tab. I. In the case
of Gerlumph, we adopt the public data provided on the
website, https://gerlumph.swin.edu.au. The realizations
we use are listed in Tab. II.

Using these realizations, we can obtain the PDF of
the magnification. Note again that we study the distri-
bution of the total magnification, the sum of the multi-
ple images. We focus on the high-magnification region
µtot & 10µav, which corresponds to r & rth with the
threshold of the normalized magnification rth ' 10.

In what follows, we consider two cases for testing our
model, cases of a point source and a finite source size,
which are tested by CCtrain and Gerlumph, respec-
tively. In Sec. IVA, we describe the point source case, in
which we assume that the suppression factor S(r; rmax)
can be ignored. We then study the case with a finite
source size in Sec. IVB.

A. Point source

In the case of a point source, we can ignore the sup-
pression term and set S(r; rmax) = 1 in Eq. (60). As
shown in Eq. (69), the dependence of the parameters on
the high magnification tail of the PDF can be absorbed
with X and Y . Thus all data should ideally be located
along a single line in the X-Y plane. We introduce two
fitting parameters, A0 and B0, where A0 is introduced
to determine the normalization and B0 is introduced to
take account of the uncertainty in Eq. (66). Therefore,
B0 should be O(1). With A0 and B0, our model of the
magnification PDF is expressed in the form of

PPS(r > rth)
p
µav

=
A0

2.4
f?totµav exp(�B0f?totµav)

✓
10

rth

◆2

.(70)

We determine these parameters by fitting the simulation
data obtained from CCtrain with the threshold magni-

FIG. 3. Comparing the integrated PDF between the simula-
tion and our model. The purple and orange dots are obtained
by the CCtrain with tot = 0.49 and 0.45, respectively. The
green dots are the simulation result of the Gerlumph. The
realizations are listed in Tab. I and II. The red line is the
fitting result of our model in the case of the point source with
fitting parameters A0 = 0.058 and B0 = 0.402. The blue line
is the fitting result of our model with the finite source case
with fitting parameter C0 = 2.0.

fication rth = 10.
In Fig. 3, we show the result of the fitting. We find

that the best fitting parameters are A0 = 0.058 and
B0 = 0.402. It is seen that the PDF shows the turnover
between linear and nonlinear regimes, which is well repro-
duced by our model. As expected, the simulation data
with di↵erent parameters are approximately along a sin-
gle line in this plane, and the best-fitting value of B0 is
O(1).

B. Finite source size

Taking the finite source size into account, our model
of the high-magnification tail of the PDF is given by

dP

d log10 r
= 2 ln 10 PPS(r > rth)S(r; rmax)

✓
r

rth

◆�2

.

(71)
Here we discuss the suppression function S(r; rmax) due
to the finite source size, using the simulation data ob-
tained from Gerlumph.
There is a maximum magnification due to the averag-

ing e↵ect in the case of the finite source size, as described
in Sec. II A. The resolution on the source plane in Ger-
lumph, can be interpreted as the e↵ective source size,
i.e., �W = 0.0025✓Ein. In the linear regime, where the

6

FIG. 1. The average (red solid line) and 1� standard devia-
tion (blue dashed lines) of the magnifications as a function of
the distance from the caustic. The vertical dotted line is the
position of the caustic. We set 0 = 0.7, ✏ = 10�5, ? = 0.004,
✓Ein = 1.0, �W = 0.05, and R? = 1500. The average mag-
nification and dispersion are calculated using Eqs. (56) and
(50). Here B and �B are obtained from Eq. (49) assuming
B = �B . The standard deviation is calculated by Eq. (48).

uniformly distributed randomly on the lens plane. There-
fore, the original Einstein radii of all microlenses are the
same, which is denoted by ✓Ein, and the number of mi-
crolenses, N tot

? , is proportional to the mass fraction of
the microlenses f?. The average magnification does not
depend on the mass fraction f? but on the total mass, as
is analytically shown by Dai and Pascale [14] (Eq. (49)),
and is expressed by

µav =
1

|(1� tot)2 � �2
tot|

=
1

|1� 2tot|
. (58)

To be precise, while the background convergence would
be B = tot � ? as we fix the total convergence, the
simulation conducted by Gerlumph [16] also supports
the above relation. Note that the average magnifica-
tion can be decomposed into the tangential magnification
µt,av and radial magnification µr,av, where they satisfy
µt,av = µav and µr,av = 1 since we adopt tot = �tot.

We study the parameter dependence of the high mag-
nification tail of the PDF on the average magnification
µav, which depends solely on the total convergence, and
the mass fraction of microlenses f?. For convenience, we
introduce the normalized magnification

r =
µtot

µav
(59)

and focus on the high magnification regime, r & 10.
Note that, since the average magnification is determined

by the distance from the macro-critical curve or caus-
tic, e.g., Eq. (35), our model allows us to study how the
high-magnification events appear near the macro-critical
curve, as discussed in Sec. V.
We find that the high magnification tail of the PDF

can well be modeled as

dP

d log10 r
/ N indep

?
p
µav r�2S(r; rmax), (60)

where the N indep
? denotes the independent number of

micro-critical curves, and the S(r; rmax) is the suppres-
sion function of the PDF above the maximum magni-
fication rmax due to the finite source size e↵ect. In
the case of point sources, S(r; rmax) = 1. The factor
p
µav expresses the expansion of the length of each criti-

cal curve (and caustic) under the smooth background as
shown in Sec. II B. The r�2 dependence appears from the
width around the critical curve where the magnification
takes between log10 r and log10 r + d log10 r, as shown in
Eq. (21). To summarize, the first three components on
the right-hand side, N indep

?
p
µav r�2, calculate the to-

tal area where the magnification is between log10 r and
log10 r + d log10 r, and the finite source size e↵ect is in-
corporated in S(r; rmax).
The independent micro-critical curve is a micro-critical

curve created by a microlens that has the nearest neigh-
bor distance to other microlenses larger than the size of
its micro-critical curve. The distribution of nearest inter-
microlens distances ✓nid of the randomly distributed mi-
crolenses on the lens plane follows a Rayleigh distribution
as shown in App. B

dQ

d✓nid
= 2n?⇡✓nide

�n?⇡✓
2
nid , (61)

where the number density of the microlenses n? is

n? =
f?tot

⇡✓2Ein

. (62)

The mean of the nearest inter-microlens distance is

✓̄nid =

Z 1

0
✓nid

dQ

d✓nid
d✓nid =

1

2
p
n?

. (63)

Since the typical size of each micro-critical curve is
p
µav✓Ein, we can calculate the probability of a micro-

critical curve to be independent as follows,

Q(✓nid >
p
µav✓Ein) =

Z 1

p
µav✓Ein

dQ

d✓nid
d✓nid

= exp(�f?totµav). (64)

Therefore, the number of the independent micro-critical
curve is

N indep
? = N tot

? Q(✓nid >
p
µav✓E)

/ f?tot exp(�f?totµav). (65)
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When the fraction of the microlenses is su�ciently small,
the nearest neighbor distance is almost always larger than
the size of each micro-critical curve, which results in
Q(✓nid >

p
µav✓Ein) ' 1 and N indep

? ' N tot
? . As the

fraction of the microlenses or the average magnification
becomes larger, the typical nearest inter-microlens dis-
tance becomes smaller than the typical size of each micro-
critical curve, and therefore the number of the indepen-
dent micro-critical curves becomes smaller than the total
number of the microlenses, N indep

? < N tot
? . We call the

former regime the “linear regime”, and the latter regime
the “nonlinear regime”. The boundary of the linear and
the nonlinear regimes can be defined by comparing the
mean of the nearest inter-microlens distance ✓̄nid given by
Eq. (63) and the typical size of each micro-critical curve
p
µav✓Ein, resulting

f?totµav ' 1. (66)

In the linear regime where f?totµav . 1, the number
of the independent micro-critical curves is proportional
to the fraction of the microlenses, N indep

? / f?, as can
be understood from Eq. (65). On the other hand, the
number of independent micro-critical curves is exponen-
tially suppressed in the nonlinear regime. Considering
the limit of f? ! 1, all matter components are included
in the microlenses, which in turn approaches the smooth
matter distribution. This is why the suppression occurs
in the nonlinear regime.

In Fig. 2, we plot the distribution of the nearest inter-
microlens distance (black solid line) and compare it with
the size of the micro-critical curve (vertical red solid line).
The microlenses whose distance to the nearest neigh-
bor is larger than the size of the micro-critical curves
(black dotted region) produce the independent micro-
critical curves. The vertical black dashed line is the
mean of the nearest inter-microlens distance. In this case,
only a small fraction of the microlenses are independent
since the mean of the nearest inter-microlens distance is
smaller than the size of the micro-critical curve, i.e., the
nonlinear regime.

In the case of a point source where the suppression
factor is S(r; rmax) = 1, we can model the high magnifi-
cation tail of the PDF by combining all these results to
find

dP

d log10 r
/ f?tot exp(�f?totµav)

p
µavr

�2. (67)

By integrating PDF above a threshold magnification rth,
we can obtain

PPS(r > rth) =

Z 1

rth

dP

d log10 r
d log10 r

/ f?tot
p
µav exp(�f?totµav)

✓
1

rth

◆2

,(68)

where PS denotes the point source. It is found that, by
multiplying

p
µav in both sides, Eq. (68) can be expressed

FIG. 2. Distribution of the nearest inter-microlens distance
(black solid line) and the size of the micro-critical curve (ver-
tical red solid line). The mean of the nearest inter-microlens
distance is plotted by the vertical black dashed line. The dot-
ted region is where the microlenses are independent. Here we
set ✓Ein = 0.2, tot = 0.48, f? = 0.15.

as

Y / X exp(�X), (69)

where X = f?totµav and Y = PPS(r > rth)
p
µav. The

boundary of the linear and nonlinear regimes is X ' 1.
We find for the first time that, by considering this pa-
rameter combination, the dependence of the high magni-
fication PDF on f? and µav can be examined in a unified
manner covering both the linear and nonlinear regimes.
We leave the discussion on the suppression factor due to
the finite source size in Sec. IV.

IV. COMPARISON WITH SIMULATION

To test our model shown in Sec. III, we conduct de-
tailed ray-tracing simulations using our new code CC-
train, which adopts the same algorithm for solving the
lens equation as that used in Glafic [12]. We note that
CCtrain has also been used in Weisenbach et al. [3]
to study the magnification pattern near macro-critical
curves. In addition to the adaptive grid to e�ciently
solve the lens equation, CCtrain uses a hierarchical tree
algorithm to speed up the calculation of deflection angles
from a large number of microlenses [20]. Since magnifica-
tions are derived from the second derivatives of the lens
potential at each source position as µ = 1/{(1�)2��2

},
where  and � are the convergence and shear at the image
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To test our model shown in Sec. III, we conduct de-
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train, which adopts the same algorithm for solving the
lens equation as that used in Glafic [12]. We note that
CCtrain has also been used in Weisenbach et al. [3]
to study the magnification pattern near macro-critical
curves. In addition to the adaptive grid to e�ciently
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algorithm to speed up the calculation of deflection angles
from a large number of microlenses [20]. Since magnifica-
tions are derived from the second derivatives of the lens
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• Assumption: caustic crossing probability is 
proportional to number of independent  
micro-critical curves N★

indep ← Rayleigh dist.

parameter dependence
in ray-tracing sim is 
well reproduced!

𝜇av :  mean magnif.

S : finite source 
     size effect
f★ : ICL fraction
𝜅tot :  convergence
r = 𝜇 / 𝜇av



Probing DM with caustic crossings

• caustic crossing probability is sensitive to 
mass fraction f★  of compact objects 

 → primordial black holes (PBH)

• caustic corssings appear near critical curves 
of clusters, which are sensitive to small-scale 
dark matter distribution

 → warm dark matter (WDM)
      fuzzy dark matter (FDM)
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• many small clumps

• smooth, no clumps

• clumps due to 
quantum interference

Critical curve and dark matter
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Figure 4. Radially averaged (comoving) density profiles for the

dark matter, gas, and stars for 3 haloes in our simulations under

di↵erent cosmologies are shown at z = 6. The thick solid lines are

dark matter density in the baryon full-physics run, and we also

show corresponding thin lines in the dark matter only runs, which

are similar and show that the baryons have not strongly modified

the dark matter potential wells for these low mass haloes in the

early universe. Thick grey lines show where soliton profiles of

various mass/size lie, which are just marginally resolved by our

simulations. The smallest, densest, most massive soliton profile

approximately matches the simulations.
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Figure 5. Anatomy of a cosmic web dark matter filament. Three

upper panels show a density slice through a filament at z = 7.

CDM has subhaloes on all scales. “WDM” shows caustic struc-

tures. And BECDM has large-scale coherent interference patterns

due to converging flow towards the filament, and a coarse-graining

of caustics on the local de Broglie length scale. The forth sub-

panel shows the estimated sizes of BECDM interference patterns

(at z = 7) by taking �dB of the velocity dispersion of “WDM”,

which are in good agreement with the actual BECDM simulation.

Bottom panel shows redshift evolution of the interference pattern

in the BECDM filament (middle snapshot is the same as BECDM

case in panel above, just rotated).
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• many small clumps

• smooth, no clumps

• clumps due to 
quantum interference
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Critical curve and caustic crossings
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• can measure critical curve shape with many caustic crossing



Critical curve fluctuations
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TABLE I. Our models with di↵erent (Mmin,Mmax) for the validation. We show numerical results as well as analytically

estimated values of h✓2xi
1/2

by Eq. (16) for individual models.

Model Mmin [M�/h] Mmax [M�/h] Numerical results [00] Analytic value [00] Remark

(i) 5⇥ 106 5⇥ 107 0.0334± 0.0055 0.0342 6.000 ⇥ 6.000, 10 realizations
(ii) 5⇥ 106 108 0.0459± 0.0123 0.0422 6.000 ⇥ 6.000, 10 realizations
(iii) 106 108 0.0476± 0.0114 0.0467 3.000 ⇥ 3.000, 10 realizations
(iv) 5⇥ 106 5⇥ 108 0.0631± 0.0108 0.0630 6.000 ⇥ 6.000, 10 realizations
(v) 5⇥ 106 109 0.0629± 0.0141 0.0730 6.000 ⇥ 6.000, 10 realizations
(vi) 5⇥ 106 5⇥ 109 0.113± 0.0391 0.103 6.000 ⇥ 6.000, 10 realizations
(vii) 5⇥ 106 1010 0.0995± 0.0320 0.119 6.000 ⇥ 6.000, 10 realizations
(viii) 5⇥ 106 5⇥ 1010 0.150± 0.055 0.163 6.000 ⇥ 6.000, 10 realizations
(ix) 5⇥ 106 6⇥ 1010 0.122± 0.044 0.170 6.000 ⇥ 6.000, 10 realizations
(x) 5⇥ 106 1011 0.112± 0.044 0.186 6.000 ⇥ 6.000, 10 realizations
(xi) 5⇥ 106 5⇥ 1011 0.122± 0.0529 0.256 6.000 ⇥ 6.000, 10 realizations
(xii) 5⇥ 106 1012 0.129± 0.041 0.291 6.000 ⇥ 6.000, 10 realizations

FIG. 1. An example of fluctuated critical curves by CDM subhalos for each model summarized in Table I. The red dashed
vertical line shows the original macrocritical curve described in Sec. II. The gray points show critical curves calculated in
Glafic, while the blue points show the fluctuated critical curves obtained by filtering, as explained in the text. We also show

the value of h�✓2xi
1/2

for each panel in units of arcsec. For the mean value of each model, see Table I. Top left: model (i),
Top center: model (ii), Top right: model (iii), Middle left: model (v), Middle center: model (vii), Middle right: model (viii),
Bottom left: model (ix), Bottom center: model (x), Bottom right: model (xii).

values of h✓
2
xi

1/2
for models (i) - (viii) agree well with

the analytically estimated values from Eq. (16). When
the Mmax becomes larger than 5 ⇥ 1010M�, the numer-
ically estimated values become smaller than the analyt-
ically estimated ones. This deviation may come from
the non-Gaussianity due to massive subhalos; the prob-

ability of their existence is rare, i.e., there seldom exists
such massive subhalos in our calculation box, while their
analytical contribution to h

2
i is significant. Thus, ex-

amining whether the distribution of �✓x is Gaussian or
not should provide useful guidance on this deviation. In
addition, we may think of this saturation as occurring
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• derive an analytic formula 
that connects P(k) of critical 
curve fluctuations with P(k) 
of DM small-scale density 
fluctuations! 

3

where �, ��1, and ��2 represent the convergence and
two components of the shear due to substructures, re-
spectively. The determinant of the Jacobian matrix is
given by

det

 
@�(✓̃)

@✓

!

⇡ (✏�✓x � �� ��1) (2(1� 0)� �+ ��1)� ��
2
2

⇡ 2(1� 0)(✏�✓x � �� ��1).
(9)

Since the determinant must be equal to zero, the fluctu-
ated critical curve satisfies

�✓x =
1

✏
(�+ ��1). (10)

From Eq. (10), we obtain the power spectrum of �✓x
as

P�✓x =
1

✏2
(P� + 2P���1 + P��1) , (11)

where P�✓x , P�, and P��1 are the auto two-dimensional
power spectrum of �✓x, �, and ��1, respectively, and
P���1 represents the cross power spectrum between �

and ��1. Here, we define the two-dimensional power spec-
trum of X and Y as

hX(k)Y (k0)i = (2⇡)2�2D(k + k0)PXY , (12)

where k is a wave number on a two-dimensional plane.
Using the relations between � and ��1,

P��1 = cos2(2�`)P�,

P���1 = cos(2�`)P�,
(13)

we obtain

P�✓x =
1

✏2
(1 + 2 cos(2�`) + cos2(2�`))P�, (14)

where �` is the azimuthal polar. Taking average of �`,
we finally obtain

P�✓x =
3

2✏2
P�, (15)

and

✏
2
h�✓

2
xi =

3

2

Z
d log k

k
2

2⇡
P� =

3

2
h�

2
i . (16)

Note that ✏
2
h�✓

2
xi ⇡ h�✓

2
xi /✓

2
Ein, given that ✏ ⇡ 1/✓Ein.

Deriving these simple formulas of Eqs (15) and (16) is
the main result in this paper. Although previous work
has derived a formula between fluctuations of image po-
sitions and the surface density perturbations from sub-
structures [19], as far as we are aware, this is the first
time to derive the formulas between the critical curve
fluctuations and the surface density perturbations. These

formulas allow us to analytically estimate the variance of

P�✓x or h�✓2xi
1/2

from the surface density power spectrum
of substructures, P�.
While Eq. (15) is derived assuming a complete orthog-

onal coordinate system, we argue that Eq. (15) holds
rather generically because near the fold critical curve
tangential and radial magnifications generally behaves
as [35]

µt ⇡
µt0

�✓
, µr ⇡ const., (17)

where �✓ denotes the distance from the critical curve.
Since the tangential magnification is defined by µ

�1
t =

1� � � with � =
p

�
2
1 + �

2
2 , substructures modify the

inverse of the tangential magnification as

µ
�1
t ⇡

�✓

µt0
� ��

�1

�
��1 �

�2

�
��2. (18)

Since the perturbed critical curve satisfies µ
�1
t = 0, we

obtain

P�✓ = µ
2
t0

"
P� +

✓
�1

�

◆2

P��1 +

✓
�2

�

◆2

P��2

#

=
3µ2

t0

2
P�,

(19)

where we take an average of �`. Equation (19) is essen-
tially same as Eq. (15) if µt0 = 1/✏.
While our analytic results are applicable to any form

of substructures, here let us describe a specific form of
P�(k) when substructures are CDM subhalos. Using the
halo formalism [36] and assuming that the spatial corre-
lation between subhalos can be negligible (i.e., subhalos
are randomly distributed), we can compute the surface
density power spectrum as an integral over the mass func-
tion weighted by their surface density profile as [26]

P�(k) =

Z Mmax

Mmin

dn
2D

dM
|̃M (k)|2 dM, (20)

where k =
q

k2x + k2y, Mmin and Mmax are the minimum

and maximum mass of subhalos, respectively, dn2D
/dM

is the surface number density of subhalos with masses of
[M,M + �M ], and ̃M (k) is the Fourier transform of the
convergence M provided by a subhalo of mass M . Here
̃M (k) can be calculated by

̃M (k) =
MũM (K⇤ = (kx, ky, 0))

⌃cr
, (21)

where ⌃cr is the critical surface density, and ũM (K) is
the Fourier transform of their three-dimensional density
profile, ⇢M , (see the Appendix),

ũM (K) =

Z Rvir

0

4⇡R2

M

sinKR

KR
⇢M (R)dR, (22)

less subhalos

more subhalos

DM small-scale density fluctuations

critical curve fluctuations

𝜖 ~ 1/𝜃Ein

• formula validated with 
simple simulations



P(k) of CDM and WDM

• can be calculated with halo-model approach      
(e.g, Hezaveh+2016)
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P(k) = ∫ dM
dn
dM

ũ(k)
2

subhalo mass function Fourier transform of NFW profileDark Matter Subhalo Power Spectrum 3

κM provided by a subhalo of mass M ,

κM (k) =

∫

κM (r)eik·rd2r = 2π

∫

κM (r)J0(kr)r dr,

(2)
where the second equality holds for circularly symmetric
κM (r). Here, we make the flat-sky approximation, which
is quite accurate given the ∼ arcsecond field of view
relevant for strong lensing.
Equation (1) is instructive in understanding exactly

what aspects of the subhalo distribution control the
form of the power spectrum shown in Figure 1. For
example, note that on large scales (small wavenumber k),
the substructure power spectrum plateaus to a constant
value. The length scale above which P (k) becomes flat
corresponds to the sizes of the largest subhalos (compare
blue vs. purple curves in the Figure). The amplitude
of the power on these large scales is determined by
the total abundance of subhalos of all masses, with
a larger contribution from the most massive subhalos.
This can be understood by inspecting Eqn. (1). Since
κM ∝ M , and assuming a power-law mass function
dn/dM ∝ M−α, then the integrand in Eqn. (1) behaves
as M3−α, which is dominated by high masses for typical
α ≈ 2. Towards smaller length scales, the power
spectrum changes shape, declining towards higher k.
The shape of the power spectrum on these scales is
affected by two different terms: the internal profiles of
massive halos, and the slope of the subhalo mass function
(through the connection of tidal radius to subhalo mass).
Fig. 1 illustrates the effects of varying either of these
properties. Given a finite observable dynamic range, it
may be difficult to disentangle these two effects.

3. THE LIKELIHOOD OF THE DENSITY POWER
SPECTRUM

In this section, we describe the formalism for
measuring the substructure power spectrum from lensing
measurements. Suppose we have observations O (e.g.,
surface brightness maps) and random measurement noise
N measured at n pixels. At each pixel, there is also
a random deflection angle α coming from substructure.
We try to model the observations with a model that has
parameters p describing the structure of the smooth lens
potential and the background source emission. Suppose
that both the noise N and deflections α are Gaussian
random fields with probability:

P (N) =
exp

(

− 1
2N ·C−1

N ·N
)

(2π)n/2|CN |1/2
(3)

where CN = 〈N N〉 is the n×n noise covariance matrix,
and similarly,

P (α) =
exp

(

− 1
2α ·C−1

α · α
)

(2π)n|Cα|1/2
(4)

where Cα = 〈αα〉 is the 2n× 2n covariance matrix for
deflection angles. Explicitly,

〈αi(x)αj(x+ r)〉=A1(r)δij +A2(r)
rirj
r2

(5)

A1(r)=4

∫

|κ(k)|2
J1(kr)

kr

dk

k

A2(r)=−4

∫

|κ(k)|2J2(kr)
dk

k
.
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NFW Rs = Rtid a l/4
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point masses
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∆α = 0.5

Fig. 1.— Power spectrum of projected density fluctuations
from subhalos in the Via Lactea II (VL2) simulation. Subhalo
masses, sizes, and locations in the VL2 catalog are used to generate
theoretical power spectra using Eqn. (1). The blue solid curve
shows our fiducial model which includes subhalos with M <
5 × 107M! with NFW profiles with Rs = Rtidal/4. The purple
and red curves show the power spectrum when we alter the tidal
radius, or the density profile (Rs) respectively. The solid black
curve shows the power spectrum if the subhalos consist of point
masses. The light-green curve shows the power spectrum when the
slope of the mass function is altered by 0.5. The dotted lines show
the power spectrum of subhalos with M < 5 × 106M!, for our
fiducial model (blue), and for the point mass model.

where we have used ∇ · α = 2κ. To estimate
the likelihood for a given covariance given a set of
measurements, we’ll use Bayes’ Theorem, which says
that the likelihood for Cα, CN is proportional to the
likelihood for generating our observed measurements
Oobs given Cα and CN :

L(Oobs,p) =

∫

dnNd2nαP (N)P (α)

δ

[

Om(p) +
∂O

∂α
∆α+N −Oobs

]

Pp(p) (6)

Here, Om(p) is the model prediction for parameter set
p. Recall that p includes parameters for both the
smooth lens and the source emission. In this work,
we describe the source emission non-parametrically, as
a pixelated map. Because the source map has many
degrees of freedom that are not fully constrained by
the observations, regularization is required to avoid
over fitting (see e.g., Warren & Dye 2003; Suyu et al.
2006). This regularization acts as a prior, Pp(p), which
multiplies the above likelihood. We use a Gaussian prior
described by a covariance matrix Cp,

Pp(p) =
exp

(

− 1
2 (p− pprior) ·C−1

p · (p− pprior)
)

(2π)np/2|Cp|1/2
, (7)

where np is the number of parameters, and pprior are
fiducial parameters preferred by the prior. Without loss
of generality, we will set pprior = 0 to avoid confusion in
the expressions below.
Assuming that the noise and substructure deflections

are small, then the best-fitting parameters p are always

H
ezaveh+

2016



P(k) of FDM?

• wave effect below de Broglie wavelength

λdB =
h

mv
= 180 pc ( m

10−22 eV )
−1

( v
1000 km/s )

−1

• dark matter halo consists of quantum clumps 
with their size ~ λdB

simulation (Schive+2014)
27



Analytic model of P(k) in FDM
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simulation (Schive+2014)
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These results can also be understood qualitatively as386

follows. The variance in real space is obtained by387

�2
� ⇠

Z
d2k P (k) ⇠ O

✓
�c

rh

◆
⇠ O

✓
1

N

◆
, (30)388

where N ⇠ rh/�c is the number of clumps along the389

line of sight. From Eq. (30), the fluctuation along the390

line of sight can be approximated as O(1/
p
N), which is391

consistent with a naive picture that O(1) fluctuations of392

individual clumps are averaged out by N clumps along393

the line of sight. As the total halo mass becomes larger,394

the virial radius becomes larger and the number of quan-395

tum clumps along the line of sight increases. The large396

number of clumps along the line of sight results in the397

smaller amplitude of the power spectrum due to averag-398

ing.399

Fig. 3 shows the FDM mass dependence. It is found400

that the power spectrum damps at the larger wavenum-401

ber and the amplitude in the plateau region is smaller402

with the larger FDM mass. Since the FDM mass and403

the de Broglie wavelength are related with each other404

by �c / m�1, the power spectrum in the plateau re-405

gion is proportional to P (k) / m�3, and the damping406

scale is k / m. These results can also be understood407

in the same way as in the discussion above. As the408

FDM mass becomes larger, the de Broglie wavelength409

becomes smaller, leading to the larger number of the410

clumps along the line of sight, and the lower amplitude411

of the power spectrum. Since the sub-galactic matter412

power spectrum is sensitive to the FDM mass, it can be413

used to constrain the mass range of FDM.414

In addition, Fig. 1 in Hezaveh et al. (2016) shows that415

the sub-galactic power spectrum due to CDM subha-416

los is around 10�6 h�2 kpc2 in the small wavenumber417

limit, which is much smaller than the sub-galactic mat-418

ter power spectrum in the FDM model in most cases of419

interest (see also Chan et al. 2020). It suggests that we420

can obtain interesting constraints on FDM mass around421

the typical range from observations of the sub-galactic422

matter power spectrum, which we discuss in Sec. 3.423

3. COMPARISON WITH OBSERVATION424

Using our formalism described in Sec. 2, we com-425

pare the sub-galactic matter power spectrum with a426

real observational data to constrain the range of FDM427

mass. We first use the current constraint on the sub-428

galactic matter power spectrum (Bayer et al. 2018) that429

is obtained from the SLACS strong lens system SDSS430

J0252+0039 (Auger et al. 2009). Next we discuss the431

future prospect of constraints that are also obtained by432

strong lens systems (Hezaveh et al. 2016). In Sec. 3.1,433

we define the dimensionless convergence power spec-434

Figure 2. Halo mass dependence of the sub-galactic matter
power spectrum. Two parameters Ms/Mh and m are fixed as
Ms/Mh = 0.01 and m = 10�22eV, respectively. The position
x is set to one-tenth of the virial radius of each halo, which
is roughly the Einstein radius that we focus in Sec. 3

Figure 3. FDM mass dependence of the sub-galactic matter
power spectrum. The other 3 parameters are fixed as Mh =
1013 h�1 M�,Ms/Mh = 0.01, and x being one-tenth of the
virial radius of the halo.

trum. We show the comparison with the current data435

in Sec. 3.2, and the future prospect in Sec. 3.3.436

3.1. Dimensionless convergence power spectrum437

We use the dimensionless convergence power spectrum438

described below when we compare our model with the439

observation. Consider a lens system with the angular440

diameter distance from the observer to the lensDd, from441

the observer to the source Ds and from the lens to the442

source Dds. The critical surface-mass density ⌃cr for443

this lens system is given by444

⌃cr =
c2

4⇡G

Ds

DdDds
, (31)445

where c is the speed of light. With this critical surface-446

mass density and projected density field (Eq. (24)), we447

that are typically larger than the transit radius, unless the FDM
mass is too small (see also the captions to Figures 2 and 3), we
can compare our model with strong lens observations, as we
attempt in Section 3. We also note that our model is likely to be
invalid around and beyond the virial radius, as we do not
include the dark matter distribution outside the virial radius.

The normalized mass profile function ( )r ru � a is assumed
to be a spherical Gaussian function whose radial variance
equals half of the de Broglie wavelength. These assumptions of
sphericity and the Gaussian radial mass profile are consistent
with the findings in Dalal et al. (2021), in which the FDM halo
structure derived using the method proposed in Widrow &
Kaiser (1993) is found to be well described by a superposition
of randomly distributed spherical Gaussian clumps. The
Fourier transform of this function in the projected field is

( )i iu u
k

exp
8

. 27k k
c
2 2M

� � �⎜ ⎟⎛⎝ ⎞⎠
In order to calculate the de Broglie wavelength

λc= 2πÿ/mv, we set v as

( )v
GM
R

3
2

, 28tot

vir
�

where G is the gravitational constant, Mtot is the total mass that
is the sum of the halo mass Mh and the stellar mass Ms, and Rvir

is the virial radius of the halo. Note that v is assumed to be
constant within each halo throughout the paper. An additional
parameter for calculating λc is FDM mass m. Finally, the
position x in the projected field is needed to calculate the power
spectrum.

To sum up, four parameters are required to calculate the
subgalactic matter power spectrum in FDM halos: the total halo
mass Mh, the stellar-to-halo mass ratio Ms/Mh, the FDM mass
m, and the position x. By substituting the normalized mass
profile function in Equation (27), Equation (26) becomes

( ) ( )
( ) ( ) ( )

( )P k
x

x x r x
k4

3
exp

4
. 29h

h b

2
c
3

h

c
2 2QM M

�
4

4 � 4
�⎜ ⎟⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠

With this model, we show the parameter dependence,
especially that of the total halo mass Mh and the FDM mass m.
Figure 2 shows the total halo mass dependence. It is found

that the power spectrum damps at larger wavenumbers with
larger total halo masses. In addition, the amplitude of the
plateau region is smaller with larger total halo masses. The
former can be understood as follows. From Equation (29), we
can find that the spectrum damps at around k∼ 1/λc. From
Equation (28), we have approximately v Mh

1 3r , since we can
approximate Mtot∝Mh and R Mvir h

1 3r . The de Broglie
wavelength scales as Mc h

1 3M r � . Therefore, the damping
scale is different for different total halo masses, even if the
FDM mass m is fixed. The latter result can be understood as
follows. In the plateau region, ( ) ( )P k r x Mc

3
h h

4 3Mr r � , if
we approximate rh(x)∝ Rvir.
These results can also be understood qualitatively, as

follows. The variance in real space is obtained by

( ) ( )' 'd k P k
r N

1
, 302 2 c

h
¨T

M
_ _ _E ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠

where N∼ rh/λc is the number of clumps along the line of
sight. From Equation (30), the fluctuation along the line of
sight can be approximated as ( )' N1 , which is consistent
with the naive picture that ( )' 1 fluctuations of individual
clumps are averaged out by N clumps along the line of sight.
As the total halo mass becomes larger, the virial radius also
becomes larger, and the number of quantum clumps along the
line of sight increases. The large number of clumps along the
line of sight results in the smaller amplitude of the power
spectrum due to averaging.
Figure 3 shows the FDM mass dependence. It is found that

the power spectrum damps at larger wavenumbers, and the
amplitude in the plateau region is smaller with larger FDM
masses. Since the FDM mass and the de Broglie wavelength
are related to each other by λc∝m−1, the power spectrum in
the plateau region is proportional to P(k)∝m−3, and the
damping scale is k∝m. These results can be understood in the
same way as discussed above. As the FDM mass becomes
larger, the de Broglie wavelength becomes smaller, leading to a
larger number of clumps along the line of sight, and the lower

Figure 2. Halo mass dependence of the subgalactic matter power spectrum.
The two parameters Ms/Mh and m are fixed as Ms/Mh = 0.01 and
m = 10−22eV, respectively. The position x is set to one hundredth of the
virial radius of each halo, which is roughly the Einstein radius that we focus on
in Section 3. For each case, we confirm that the radius x is larger than the
transition radius of the soliton core (Schive et al. 2014b).

Figure 3. FDM mass dependence of the subgalactic matter power spectrum.
The other three parameters are fixed as Mh = 1013 h−1 Me, Ms/Mh = 0.01, and
x being one hundredth of the virial radius of the halo, x ∼ 4.4 h−1 kpc. We note
that x is larger than the transition radii of the soliton cores (Schive et al. 2014b),
which are 0.014, 0.14, and 1.4 h−1 kpc for FDM masses of 10−21, 10−22, and
10−23 eV, respectively.
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• derive P(k) assuming 
    superposition of 
    Gaussian clumps

Here we add a subscript f on P(k), since we are only
considering the FDM component. Assuming spherically
symmetric halos and matter profile functions of each clump,
Equation (16) can be further simplified as
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While the clumps in FDM simulations appear to be
nonspherical (e.g., Schive et al. 2014a), we assume them to
be spherical for simplicity. The validity of this assumption in
our model is discussed in Section 2.3.

Here, we show that the effective halo size rh(x) contains the
information for the density dispersion along the line of sight.
We can rewrite Equation (19) as
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where ( )xhS represents the average halo density along the line
of sight and s2(x) represents the density dispersion, which are
given by
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Figure 1 shows an example of rh(x), assuming an NFW

profile as the halo density profile. It is seen that rh(x)
monotonically increases around the central region, while it
monotonically decreases in the outer region. This behavior can
be understood with Equation (20). Around the central region,
s(x) determines the increase/decrease of rh(x), since the density

dispersion along the line of sight is large. In the outer region,
the halo size along the line of sight Z determines the shape of
rh(x).

2.2. Including Baryon

In Section 2.1, we describe the subgalactic matter power
spectrum of FDM-only halos. Since most of the halos contain
baryon, however, we also need to consider a baryon profile. We
assume that baryon is smoothly distributed with a smooth
density profile function ρb(r). The total density ρ(r) is

( ) ( ) ( ) ( )r r r . 23f bS S S� �

The total projected density Σ(x) is

( ) ( ) ( ) ( )x x x , 24f b4 � 4 � 4

where Σb(x) is defined as

( ) ( ) ( )x dz r . 25
Z

b b¨ S4 w

Since we assume that the baryon component does not contain
any randomness, the ensemble averaging of the baryon
functions does not change their functional form. We repeat
the calculation from Section 2.1 in order to obtain the
subgalactic matter power spectrum with baryon,
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Equation (26) indicates that the power spectrum with baryon is
smaller than that without baryon, because the additional
contribution of the smooth baryon component smears out the
density fluctuations due to FDM.

2.3. Parameter Dependence

We calculate the power spectrum using Equation (26) with
specific functions. The halo and baryon profiles are set to the
NFW and Hernquist profiles, respectively. Although the NFW
profile has two parameters, the total halo mass and concentra-
tion parameters, it is known that there is a scaling relation
between them (e.g., Ishiyama et al. 2021). Assuming that
relation, we need only one parameter, the total halo mass
denoted by Mh. The calculations are conducted using the
python module COLOSSUS (Diemer 2018). The Hernquist
profile has two parameters, the total stellar mass and
characteristic radius. The empirical relation between them is
known by fitting a sample of 50,000 early-type galaxies (Hyde
& Bernardi 2009). We thus use the single parameter Ms to
determine the Hernquist profile. Note that we use the stellar-to-
halo mass ratio Ms/Mh as a parameter instead of the stellar
mass Ms. For sufficiently high-mass halos with masses larger
than about 1011Me, the stellar-to-halo mass ratio in the FDM
model is expected to be the same as the ratio in the CDM model
(Cristofari & Ostriker 2019), and is known to be around
10−3–10−1 (Wechsler & Tinker 2018) in this halo mass range.
As mentioned in Section 2.1, the soliton core is ignored in

our model. Therefore, our model is not valid around the central
region of FDM halos. According to Schive et al. (2014a), the
transition radius between the soliton core and NFW profile is
around 3rc, where rc is the core radius that is known to scale
with the FDM mass as well as the total halo mass (Schive et al.
2014b). Since we focus on Einstein radii in strong lens systems

Figure 1. The effective halo size rh(x) as a function of radius x in the projected
density field. We use the NFW profile as the halo profile. The total halo mass is
set to Mh = 1013 h−1 Me, and we use the relation between the concentration
parameter and the total mass of Ishiyama et al. (2021). The integration along
the line of sight is limited to the virial radius, about 438 h−1 kpc.
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• more caustic crossings needed to study DM
• JWST is the solution!



>40 lensed stars in “Dragon”
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Fudamoto, Sun, Diego, Dai, MO+ arXiv:2404.08045

• Dragon Arc at 
z=0.725 behind  
Abell 370 

• >40 lensed stars 
discovered from    
2 epoch JWST obs. 
of Dragon!

• DM can be 
constrained in 
several ways
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20232022

Figure 1. Upper panel : A false-color image of the entire “Dragon” arc behind the Abell 370 cluster (Soucail et al. 1987a),
using JWST filters F090W, F150W, and F200W. North is up, East to the left, and a reference angular scale of 100 is shown by
the solid horizontal bar at the bottom right corner The dashed white rectangle shows the region of interest further analyzed in
Figure 2. Lower panels: F200W zoom in on a part of the Dragon in the 2022 image (left panel) and in the e↵ective F200W in
2023 (right panel). The e↵ective F200W image in 2023 was made using F182M and F210M images (see §3.1). Examples of the
apparently bright microlensing events are indicated, where dashed half-crosses show bright sources seen only in 2022 data and
solid half-crosses show sources only in 2023. Many additional microlensing events exist, but are only visible in the di↵erential
image in Figure 2. Horizontal bars in the lower right corners show 100 scales.

image (2022). We use �obs = 2µm images to iden-
tify transients instead of the repeated F410M filter be-
cause the 2µm data are deeper by ⇠ 1mag and higher
spatial resolution. To make the 2023 epoch F182M +
F210M image (i.e., ’e↵ective’ F200W image), we first
performed point spread function (PSF) homogenization
for the F182M and F200W images to match their PSFs
to that of F210M. The PSF for each image was made
using WebbPSF (Perrin et al. 2014) applying the wave-
front measurements for the closest date of each observa-
tion. Convolution kernels were produced using pypher

(Boucaud et al. 2016) by applying a regularization fac-
tor of 0.0001. The kernels were convolved using the
convolve2d function of the scipy.signal submodule
(Virtanen et al. 2020). Using the PSF-homogenized
F182M and F210M images, we created an e↵ective
F200W image by linearly interpolating fluxes at the
pivot wavelength of each filter. The di↵erential image
was then created by subtracting the e↵ective F200W

image (2023) from the PSF-homogenized F200W image
(2022).
Finally, we subtracted the global background of the

di↵erential image. This is to remove any large-scale
background in the di↵erential image, mostly because of
the slight di↵erence in background (sky and intracluster
light) subtraction during the production of mosaicked
images. As a result, a clean di↵erential image was cre-
ated with the pixel distribution of ⇠ 0.0± 0.8 nJy. The
di↵erential image clearly shows significant positive and
negative peaks across the Dragon arc, indicating a large
number of transient events observed over the two epochs
(Figure 2).

3.2. Transient Detection

We used DAOFIND (Stetson 1987) incorporated in
the photutils.detection submodule and SExtractor

(Bertin & Arnouts 1996) to detect microlensing tran-
sients from the di↵erential image. These two source-
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Figure 2. Top Panel : The observed ⇠ 2µm di↵erential image between the 2022 and 2023 epochs. Positive signals (red) show
objects that appear only in 2023, while negative signals (blue) show sources only seen in 2022. Contours show critical curves
for z = 0.725 estimated from several programs: the solid black critical curve is derived with the WSLAP+ code (Diego et al.
2007), the dashed green lines are from the lenstool software (Jullo & Kneib 2009) analyzed in Niemiec et al. (2023), and the
dash-dotted purple lines are from the Light-Traces-Mass (LTM) method described by Zitrin et al. (2009). Star symbols indicate
locations of previous HST detections of microlensing events (Kelly et al. 2022). Lower Panels: Zoom-ins of crowded transient
regions indicated with A, B, C, and D letters in the upper panel. Circles (r = 0.0012) show detected microlensed events. Solid
circles show lensed stars significantly detected in 2023 epoch, while dashed circles indicate stars detected events in 2022 epoch.
In total, 46 microlensed stars are significantly detected.

finding algorithms are complementary in a way that
DAOFIND e�ciently detects circular Gaussian sources in
crowded regions while Sextractor can detect less circu-
lar sources that can also be found in the crowded regions
in the di↵erential image.
For the Sextractor run, to detect compact

sources, we applied DETECT MINAREA = 5 and
DETECT MINTHRESH = 2.68 (i.e., > 6� detection). To
deblend crowded sources, we applied a relatively low
contrast parameter of DEBLEND MINCONT = 0.0005.
With these settings, we run Sextractor for positive and
negative instances of the di↵erential image, correspond-
ing to transient events in 2023 and 2022, respectively.
For DAOFIND run, we used a 4� threshold of 0.03MJy/sr
(0.6 nJy pix�1) and a kernel full width at half maximum
of 2.5 pixels. Similarly, DAOFIND was used for positive
and negative instances of the di↵erential image.

For both of the source detections, we masked regions
where bright sources (e.g., bright cluster member galax-
ies and bulges of the Dragon arc) exist in the original
F200W image. This is to avoid the contamination from
their relatively strong residuals caused by minor PSF
di↵erences between 2022 and 2023.
To assess the impact of noise signal on detection,

we ran the same source-finding routine over the same
F200W di↵erential image of several types of galaxies
(e.g., clumpy or smooth morphology with di↵erent lumi-
nosities). Except for genuine transients such as super-
novae that can be also detected in other bands, we do
not detect any significant bad pixels that only appear
in the single band with similar significance. Therefore,
we conclude that the vast majority of transients detected
on the Dragon arc are not data-quality artifacts but real
transient events.
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Figure 4. Lensing Substructure Predictions: The top row shows the dark matter magnification including substructure for
CDM (top left) and the de Broglie waves for  DM, for two choices of de Broglie wavelength, 15pc and 100pc (top center and
top right respectively). The lower row is the microlensing detection rate based on the magnification map from the top row
with the microlensing magnification included and convolved with the lensed star luminosity function. For CDM the sub halo
masses range is 106�8M�, with CNFW = 30 and critical curves can be seen around sub-halos mainly on the outside of the
cluster critical curve. The microlensing detections are seen to trace these critical curves, enhanced by the magnification bias
(bottom left). We predict reduced negative magnification locally by the sub-halos interior to the cluster critical curve and
hence a deficit of microlensing. For  DM a broad network of critical curves is formed symmetrically about the Einstein radius
of the cluster (dashed vertical line) which for �dB = 10pc ranges over a ' 4kpc band (top center), like the data. A much
larger spread is predicted for � = 100pc de Broglie (top right), spread over ' 40kpc, much broader than the observations.
The corrresponding microlensing detection rate is seen to be shifted to the inside of the cluster critical line for  DM by about
�0.6kpc for � = 10pc(center bottom), like the data, caused by the longer tail to higher magnification for negative parity
images. The opposite shift is predicted for CDM microlensing detections as they are skewed into the outside the Einstein radius
following the extra sub-halo critical curves formed there (bottom left).
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Figure 4. Lensing Substructure Predictions: The top row shows the dark matter magnification including substructure for
CDM (top left) and the de Broglie waves for  DM, for two choices of de Broglie wavelength, 15pc and 100pc (top center and
top right respectively). The lower row is the microlensing detection rate based on the magnification map from the top row
with the microlensing magnification included and convolved with the lensed star luminosity function. For CDM the sub halo
masses range is 106�8M�, with CNFW = 30 and critical curves can be seen around sub-halos mainly on the outside of the
cluster critical curve. The microlensing detections are seen to trace these critical curves, enhanced by the magnification bias
(bottom left). We predict reduced negative magnification locally by the sub-halos interior to the cluster critical curve and
hence a deficit of microlensing. For  DM a broad network of critical curves is formed symmetrically about the Einstein radius
of the cluster (dashed vertical line) which for �dB = 10pc ranges over a ' 4kpc band (top center), like the data. A much
larger spread is predicted for � = 100pc de Broglie (top right), spread over ' 40kpc, much broader than the observations.
The corrresponding microlensing detection rate is seen to be shifted to the inside of the cluster critical line for  DM by about
�0.6kpc for � = 10pc(center bottom), like the data, caused by the longer tail to higher magnification for negative parity
images. The opposite shift is predicted for CDM microlensing detections as they are skewed into the outside the Einstein radius
following the extra sub-halo critical curves formed there (bottom left).

dwarf galaxy core fitting to the soliton profile finding a473

boson mass of ' 10�22eV is preferred for the dominant474

dark matter in the  DM context (Schive et al. 2014;475

Chen et al. 2017; Pozo et al. 2024).476

6. DISCUSSION AND CONCLUSIONS477

We have shown the abundant microlensing in the478

Dragon Arc detected by JWST & HST follows closely479

the tangential critical curve of A370. We emphasise480

that the path of the critical curve is accurately defined481

by the reflection symmetry of many internal features482

now recognisable within the Dragon Arc, as shown in483

Figure 1. Furthermore, this model-independent path484

is almost indistinguishable to our free-form adaptive485

grid-based lens model WSLAP+ (Diego et al. 2007;486

Sendra et al. 2014; Diego et al. 2024) built from over487

90 multiply-lensed galaxy images around A370 (Niemiec488

et al. 2023) also the LTM (light traces mass) method489

(Zitrin & Broadhurst 2009) can be seen to provide a490

reasonably good comparison with the observed distribu-491

tion (Fudamoto et al. 2024). Hence, we have accurately492

pinned down the path of the critical curve allowing a493

precise comparison with the microlensing events and the494

tight correspondence means higher magnification is re-495

quired for detection. This we estimate to have a mean496

level of µ ' 3000 by convolving our stellar synthesis497

negative paritypositive parity negative paritypositive parity

effect of clumps is 
asymmetric

effect of clumps is 
symmetric

6 Broadhurst et al.

Figure 3. The o↵set distribution of JWST transients (33 detections) along all four intersections of the Dragon Arc traversed
by tangential critical curve of A370, labeled A,B,C,D in Figure 1. The left panel shows the form of the predicted distributions
for comparison with the asymmetric distribution of the data which favours negative o↵sets interior to the cluster critical curve,
with a mean of �0.7 ± 0.2kpc shown by the hatched vertical band. The broad spread with negative skewness of the observed
histogram resembles best  DM, with a de Broglie scale of 10pc favoured with �2

r = 1.8, as shown on the right, compared to
 DM with a larger de Brogle scale of 40pc.The data are in significant tension with the centrally peaked smooth DM model
shown in yellow, and with the CDM based sub-halo model, in green, as detections are skewed positive, unlike the data.

tpeak = 2R?/vt, and this will be repeated for a given318

star on average every few years at high ⌧ (Venumadhav319

et al. 2017; Diego et al. 2018; Oguri et al. 2018).320

The width of this dense micro lensing band is set by321

the separation where the optical depth exceeds unity,322

⌧ > 1. Ray tracing at high resolution has uncovered an323

important di↵erence in the distribution of microlensing324

magnification due to the switch in the sign of the local325

orthogonal stretch factors, from 1 �  + � to 1 �  � �326

at this radius, which causes the radially directed ”fig-327

ure of 8” shaped critical curve of a point mass on the328

outside to being tangentially aligned with the critical329

curve on the inside and more magnified by the boost in330

magnification parallel to the cluster curve (Venumadhav331

et al. 2017; Diego et al. 2018). Recent high-resolution332

simulations described above (Palencia et al. 2023) have333

now provided more detailed predictions for the distri-334

bution of magnifications as a function of the underly-335

ing macro-magnification and the projected surface mass336

density of microlensing stars. This parity dependence337

is shown in the inset in Figure 2 and allow a reliable338

comparison with the observations for the high optical339

depth regime ⌧ > 1, where numerical predictions are es-340

sential and have demonstrated an important distinction341

between the image parity regimes inside and outside the342

critical curve, where a longer tail to high negative magni-343

fications is predicted for microlensing with ⌧ > 1 which344

leads to a higher detection rate on the inside of the clus-345

ter critical curve as we emphasise here and shown in the346

inset of Figure 2. Also as understood in other numer-347

ical work, for both parities the probability P (µ) peaks348

at µpeak = 103�4, being smaller at higher ⌧ , rather than349

µ ' 106 for well-separated microlensing stars stars when350

⌧ < 1.351

4. ADDING DARK CDM SUB-HALOS352

The breadth of the microlensing region can be in-353

creased by a population of dark halos of su�cient mass,354

as explored by Williams et al. (2023) in the context of355

the Flashlights program, showing there is a distinct pref-356

erence for new critical curves to form around halos that357

lie outside of the critical curve (see also Abe et al. 2024).358

We follow this prescription including a power-law distri-359

bution of sub-halo masses with dN/d lnmhalo / m�0.9
halo

360

in the relevant mass range 106�8M� (Dai et al. 2018,361

2020), for which we adopt concentrated NFW profiles362

for these dark halos, with CNFW = 30 appropriate for363

their relatively low masses (Navarro et al. 1997). We see364

in Figure 3 that such a population of dark halos CDM365

can be chosen such that to broaden the critical region366

as desired by several kpc, but with a clear preference367

for the new critical curves to appear outside the criti-368

cal radius of the radius of the cluster where the excess369

sub-halo mass can exceed the critical density for lensing370

and thereby generate local Einstein rings around the371

sub-halos located there. The opposite behaviour is pre-372

dicted on the inside of the critical curve, as the critical373

Dragon Arc observation favors FDM (?)



Summary

• caustic crossings are new phenomena 
reported for the first time in 2018

• highly magnified (~thousands) individual stars

• interpretation rather complicated, but their 
basic properties now understood thanks to 
the progress of theoretical studies

• they offer a new route to probe the nature 
of dark matter
• sensitive to the PBH abundance
• probe DM small scale density fluctuations
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