Caustic crossings as a new probe of dark matter

Masamune Oguri Center for Frontier Science, Chiba University

rontier cience 2024/10/15 Cosmic Indicators of Dark Matter@Tohoku

• multiple solution of **image position** $\vec{\theta}$ for lens equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$ \rightarrow multiple images

Gravitational lensing by cluster

- massive concentration of dark matter
- useful site for studying dark matter

Gravitational lensing by cluster

Gravitational lensing by cluster

Abell 370, NASA/STScI

(Kawamata, <u>MO</u>+2016)

Critical curve and caustic

lens equation: mapping btw source and image

near critical curve/caustic \rightarrow high magnification 6

Brocken Inaglory

Caustic

- concentration of reflected or refracted light
- in gravitational lensing, it is where
 - magnification of a point source formally diverges
 - a pair of multiple images appear/disappear

Caustic crossing

Caustic crossing

Kelly+ (incl. <u>MO</u>) Nat. Ast. **2**(2018)334

Discovery of Icarus

Welch+ (incl. <u>MO</u>) Nature **603**(2022)815

Discovery of Earendel

23.0 s

Welch+ (incl. MO) Nature 603(2022)815

Discovery of Earendel

Interpretation of caustic crossings

- caustic crossings look very simple, yet in fact they are not that simple because the mass distribution is not completely smooth
- non-smoothness due to stars responsible for intra-cluster star (ICL)
- tidal stripping of cluster member galaxies explains ICL

NASA/ESA/IAC/HFF team, STS

<u>MO</u>, Diego, Kaiser+ PRD **97**(2018)023518 Diego+ (incl. <u>MO</u>) ApJ **857**(2018)25

'Destruction' of critical curve

 destruction of critical curve due to overlapping Einstein radii of ICL stars

$$\tau = \frac{\Sigma}{M} \pi \left(\sqrt{\mu_{\rm t}} \theta_{\rm E} D_{ol} \right)^2 \quad \tau \ge \mathbf{I} \quad \rightarrow \text{ saturation}$$

Caustic crossing w/ ICL

Weisenbach, Anguita, Miralda-Escude, <u>MO</u>+ Space Sci. Rev. **220**(2024)57

Simulation

Weisenbach, Anguita, Miralda-Escude, MO+ Space Sci. Rev. 220(2024)57

Caustic crossing lightcurves

Analytic model

Model (Point source)

Model (Finite source) CCtrain ($\mu_{av} = 50$) CCtrain ($\mu_{av} = 10$)

Gerlumph

 10^{-2}

 10^{-1}

 $f_{\star}\kappa_{\rm tot}\mu_{\rm av}$

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-3}

 $P(r > 10) \,\mu_{\rm av}^{1/2}$

 Assumption: caustic crossing probability is proportional to number of independent micro-critical curves N_{*}^{indep} ← Rayleigh dist.

$$\frac{dP}{d\log_{10}r} \propto N_{\star}^{\rm indep} \sqrt{\mu_{\rm av}} \ r^{-2}S(r;r_{\rm max})$$

ы ^{ыр}а

 10^{1}

$$\propto f_{\star}\kappa_{\rm tot} \exp(-f_{\star}\kappa_{\rm tot}\mu_{\rm av})\sqrt{\mu_{\rm av}}r^{-2}S(r;r_{\rm max})$$

 $f \star$: ICL fraction

 κ_{tot} : convergence r = μ / μ_{av}

Probing DM with caustic crossings

- caustic crossing probability is sensitive to mass fraction f_{\star} of compact objects
 - → primordial black holes (PBH)
- caustic corssings appear near critical curves of clusters, which are sensitive to small-scale dark matter distribution
 - → warm dark matter (WDM) fuzzy dark matter (FDM)

Kawai & MO, in prep.

Constraint on PBH

constraints from event rate (w/o ICL)

Critical curve and dark matter

Mocz+2020 22

Critical curve and dark matter

Critical curve and caustic crossings

24

Abe, Kawai, <u>MO</u> PRD **109**(2024)083517

Critical curve fluctuations

derive an analytic formula
 that connects P(k) of critical
 curve fluctuations with P(k)
 of DM small-scale density
 fluctuations!

critical curve fluctuations

$$P_{\delta\theta_x} = \frac{3}{2\epsilon^2} P_{\delta\kappa}$$

 $\epsilon \sim 1/\theta_{Ein}$

DM small-scale density fluctuations

 formula validated with simple simulations

P(k) of CDM and WDM

• can be calculated with halo-model approach (e.g, Hezaveh+2016)

$$P(k) = \int dM \frac{dn}{dM} \left| \tilde{u}(k) \right|^2$$

subhalo mass function Fourier transform of NFW profile

P(k) of FDM?

wave effect below de Broglie wavelength

$$\lambda_{\rm dB} = \frac{h}{mv} = 180 \,\mathrm{pc} \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^{-1} \left(\frac{v}{1000 \,\mathrm{km/s}}\right)^{-1}$$

• dark matter halo consists of quantum clumps with their size ~ λ_{dB}

simulation (Schive+2014)

Kawai, <u>MO</u>+ ApJ **925**(2022)61

Analytic model of P(k) in FDM

• derive P(k) assuming $P(k) = \left(\frac{\Sigma_{h}(x)}{\Sigma_{h}(x) + \Sigma_{b}(x)}\right)^{2} \frac{4\pi\lambda_{c}^{3}}{3r_{h}(x)} \exp\left(-\frac{\lambda_{c}^{2}k^{2}}{4}\right)$ superposition of Gaussian clumps $r_{h}(x) = \frac{\Sigma_{h}^{2}(x)}{\int_{a} dz \ \rho_{h}^{2}(r)} = \frac{\left(\int_{Z} dz \ \rho_{h}(r)\right)^{2}}{\int_{a} dz \ \rho_{h}^{2}(r)}$

Progress with JWST

- more caustic crossings needed to study DM
- **JWST** is the solution!

Fudamoto, Sun, Diego, Dai, <u>MO</u>+ arXiv:2404.08045

>40 lensed stars in "Dragon"

- Dragon Arc at z=0.725 behind Abell 370
- >40 lensed stars
 discovered from
 2 epoch JWST obs.
 of Dragon!
- DM can be constrained in several ways

Broadhurst+ (incl. MO) arXiv:2405.19422

Constraint from skewness

Broadhurst+ (incl. MO) arXiv:2405.19422

Constraint from skewness

Summary

- caustic crossings are new phenomena reported for the first time in 2018
- highly magnified (~thousands) individual stars
- interpretation rather complicated, but their basic properties now understood thanks to the progress of theoretical studies
- they offer a new route to probe the nature of dark matter
 - sensitive to the PBH abundance
 - probe DM small scale density fluctuations