Interferometer Searches for Dark Matter

Yikun Wang Johns Hopkins University

Workshop on Cosmic Indicators of Dark Matter 2024 October 16, 2024, Tohoku University

In Collaboration with: Leonardo Badurina, Yufeng Du, Vincent Lee, Clara Murgui, Kris Pardo, and Kathryn M. Zurek

Yikun Wang, JHU, CIDM2024

 $\bar{\sigma} \propto \alpha_{\chi} \alpha_n \frac{\mu^2}{q^4}$ for light mediator

Fuzzy DM Ultralight dark matter: wavelike

Devices with super high sensitivity to classical and quantum fluctuations.

"sub-attometer position sensing over multi-kilometer baselines" - LIGO And yet to be continued...

Interferometers as high precision sensors

Laser Interferometers

Interferometers as high precision sensors

Laser Interferometers

Matter-Wave Interferometers

$$\sigma_{\phi} \equiv \frac{1 \text{ rad}}{\sqrt{N_{\text{ind}}}}$$

$$\sigma_{\phi} = \frac{1}{4} m_{\rm ind} \Delta x \, t_{\rm exp} a_{\rm min},$$

Gravitational wave fine structure constant, equivalent principle dark matter direct detection ...

For a review, see e.g. Bertone et al, SciPost Phys.Core 3 (2020) 007

Laser interferometer as Dark Matter Detectors

Laser Interferometers

Yikun Wang, JHU, CIDM2024

$= A_e \cos\left(\Omega_{\rm DM} t\right)$	Stadn
	Moris
$=A_{m_e}\cos\left(\Omega_{\rm DM}t\right)$	Hall, I

sakil, Suyama '18

(coupling to the photon or fermions)

Axions can induce polarization change of photons circulating in FP cavities.

Laser interferometer as Dark Matter Detectors

Laser Interferometers

$$a_{\rm DM} \sim 10^{-18} {\rm m/s}^2 \frac{G}{6.7 \times 10^{-11} {\rm N m}^2 / {\rm kg}^2} \frac{M}{10^7 {\rm kg}} \left(\frac{4.4 \times 10^7 {\rm m}}{L}\right)^2$$

$$R \sim (\rho_{\rm DM}/M) L^2 v_{\rm DM} \sim 1/\text{year}$$

accelerometer model.

Matter-Wave Interferometers as Dark Matter Detectors

Matter-Wave Interferometers

http://www.cobolt.se/ interferometry.html

Matter-Wave Interferometers as Dark Matter Detectors

Matter-Wave Interferometers

http://www.cobolt.se/ interferometry.html

Yikun Wang, JHU, CIDM2024

Snowmass 2203.07250 2201.07789

Projected 90th-percentile upper limits on transiting DM fraction.

Atom interferometer phase shift from linearized gravity and a weak potential

Long-baseline Atom Interferometer Gradiometer

Example: a weak potential

$$ds^{2} = -(1+2\Phi)dt^{2} - 8\Phi v_{i}dx_{i}dt + (1-2\Phi)dx_{i}dx_{i}$$

gives

$$\widetilde{\Delta\phi}_{\mathcal{E}}(\omega, \mathbf{x}_0) = T^2 \,\mathbf{k}_{\text{eff}} \cdot \nabla \tilde{\Phi}(\omega, \mathbf{x}_0) \,K_1(\omega) + T^2 \,\omega_a \tilde{\Phi}(\omega, \mathbf{x}_0) \,K_2(\omega)$$

$$\Delta \phi_{\mathcal{D}}(\omega, \mathbf{x}_0) \simeq T^2 \, \mathbf{k}_{\text{eff}} \cdot \nabla \tilde{\Phi}(\omega, \mathbf{x}_0) \, K_D(\omega)$$

$$\widetilde{\Delta\phi}_{\mathcal{S}}(\omega, \mathbf{x}_1 \to \mathbf{x}_2) \simeq T^2 \, |\mathbf{k}_{\text{eff}}| \mathcal{FT}_{t \to \omega} \left\{ \int_{|\mathbf{x}_2 - \mathbf{x}_1|/2}^{-|\mathbf{x}_2 - \mathbf{x}_1|/2} dx \, \Phi\left(t \pm x, \frac{\mathbf{x}_1 + \mathbf{x}_2}{2} + x \frac{\mathbf{x}_2 - \mathbf{x}_1}{|\mathbf{x}_2 + \mathbf{x}_1|/2}\right) \right\}$$

Badurina, Du, Lee, YW, Zurek 23'

Different contributions to the phase shift of a benchmark space debri.

 $K_S(\omega)$

Matter-Wave Interferometers as Dark Matter Detectors

Matter-Wave Interferometers

The fringe: $\langle \tilde{\Psi} | \Psi \rangle = \frac{1}{2} \left(1 + e^{-s} \cos \phi \right)$

Yikun Wang, JHU, CIDM2024

16

The fringe: $\langle \tilde{\Psi} | \Psi \rangle = \frac{1}{2} \left(1 + e^{-s} \cos \phi \right)$

- Coherent enhancement
 - $R \propto N_{\rm atm}^2$ for $q^{-1} \gtrsim r_C$

A general formalism for decoherence caused by dark matter scattering

Decoherence factor from DM events

$$\gamma = \exp\left[-\frac{m_T}{N_{\rm ind}}\int_0^{t_{\rm exp}} R \ dt\right]$$

Event rate per target mass $R = \frac{1}{\rho_T} \frac{\rho_{\chi}}{m_{\chi}} \int d^3 \mathbf{v} f(\mathbf{v})$

 m_{χ} : DM mass $\rho_{\mathrm{T},\chi}$: target/DM mass

DM velocity distribution: $f(\mathbf{v}) =$

q : momentum deposition

spin-independent DM scattering pro

 $\mathcal{F}_{\rm med}(q) = \frac{(m_{\chi}v_0)^2}{q^2 + q^2}$

Yikun Wang, JHU, CIDM2024

Riedel '13, Riedel, Yavin'17 Du, Murgui, Pardo, Y.W. and Zurek '22

- t_{exp} : measurement time
- $m_{\rm T}$: target mass
- $N_{\rm ind}$: number independently detected targets

$$\frac{\pi\bar{\sigma}}{\mu^2}\int \frac{d^3\mathbf{q}}{(2\pi)^3}\mathcal{F}_{\mathrm{med}}^2(\mathbf{q})S(\mathbf{q},\omega_{\mathbf{q}})$$

 $\rho_{\mathrm{T},\chi}$: target/DM mass density $\mu \approx m_{\chi}$: DM – nucleon reduced mass

$$= \frac{1}{N_0} \exp\left(-\frac{(\mathbf{v} + \mathbf{v}_e)^2}{v_0^2}\right) \Theta(v_{esc} - \|\mathbf{v} + \mathbf{v}_e\|)$$

$$\omega_{\mathbf{q}} = \mathbf{q} \cdot \mathbf{v} - \frac{q^2}{2m_{\chi}}: \quad \text{energy deposition}$$

$$\sum_{\mathbf{v}} \sum_{\mathbf{v}} \sum_$$

Dynamical structure factor for target response:

Response from two coherent atom clouds

$p_{\text{decoh}} = 1 - \exp\left[i\mathbf{q}\cdot\mathbf{\Delta x}\right]$

Yikun Wang, JHU, CIDM2024

A general formalism for decoherence caused by dark matter scattering $R = \frac{1}{\rho_T} \frac{\rho_{\chi}}{m_{\chi}} \int d^3 \mathbf{v} f(\mathbf{v}) \frac{\pi \bar{\sigma}}{\mu^2} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \mathcal{F}_{med}^2(\mathbf{q}) S(\mathbf{q},\omega_{\mathbf{q}})$

$$S(\mathbf{q},\omega) \equiv \frac{p_{\text{decoh}}}{V} \sum_{f} |\langle f| \mathcal{F}_{T}(\mathbf{q}) |i\rangle|^{2} \ 2\pi \delta(E_{f} - E_{i} - E_{i})|\langle f| \mathcal{F}_{T}(\mathbf{q}) |i\rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})||i\rangle|^{2} \ 2\pi \delta(E_{i})||i\rangle|^{2} \$$

$$p q \gtrsim eV$$

 $\gtrsim 0.1 \,\mu eV$

Dynamical structure factor for target response: *S*

Response from two coherent atom clouds

$p_{\text{decoh}} = 1 - \exp\left[i\mathbf{q}\cdot\mathbf{\Delta x}\right]$

Yikun Wang, JHU, CIDM2024

A general formalism for decoherence caused by dark matter scattering $R = \frac{1}{\rho_T} \frac{\rho_{\chi}}{m_{\nu}} \int d^3 \mathbf{v} f(\mathbf{v}) \frac{\pi \bar{\sigma}}{\mu^2} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \mathcal{F}_{med}^2(\mathbf{q}) S(\mathbf{q},\omega_{\mathbf{q}})$

$$S(\mathbf{q},\omega) \equiv \frac{p_{\text{decoh}}}{V} \sum_{f} |\langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | \mathcal{F}_{T}(\mathbf{q}) | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})| \langle f | i \rangle|^{2} \ 2\pi \delta(E_{f} - E_{i})|^{2} \ 2\pi \delta(E_{i})|^{2} \ 2\pi \delta(E_{i})|^{2}$$

Response from each cloud: process dependent Example: nuclear recoil (phase shift)

 $\sum_{\mathbf{A}} |\langle f | \mathcal{F}_T(\mathbf{q}) | i \rangle|^2 = N_{\text{atm}} (N_{\text{atm}} - 1) F^2(qr_{\text{C}}) + N_{\text{atm}} F_A^2(qr_{\text{A}}) + N_{\text{atm}} / A$

- Cloud form factor: F(qr_C) = ^{3j₁(qr_C)}/_{qr_C} ^{1/q > r_C}/₁
 Atom form factor: F_A(qr_A)) = ^{3j₁(qr_A)}/_{qr_A} e^{-q²s²_p/2} ^{1/q > r_A}/₁

Coherent scattering: $q r_C \lesssim 1 \rightarrow \sum_r |\langle f | \mathcal{F}_T(\mathbf{q}) | i \rangle|^2 \approx N_{\text{atm}}^2$

 $q \leq 1/r_{\rm C}, S(q,\omega) \propto N_{\rm atm}^2$: small cloud size and large number of atoms

$$r_{\rm C} = \mathrm{cm} \to q \lesssim 10 \mu \mathrm{ev}$$

Reach for light mediator

Solid: deconerence Dashed: phase shift

Mission	Target	$r_{ m cloud}$	$N_{ m nucleon}$	Δx	$t_{ m exp}$	σ_{ϕ}
		[m]		[m]	$[\mathbf{s}]$	[rad]
BECCAL —	⁸⁷ Rb	$1.5 imes 10^{-4}$	$8.7 imes 10^7$	3×10^{-3}	2.6	$1.0 imes 10^{-3}$
MAQRO —	SiO_2	1.2×10^{-7}	10^{10}	10^{-7}	100	1.0
GDM —	⁸⁷ Rb	10^{-3}	$8.7 imes 10^9$	25	20	$1.0 imes 10^{-4}$
Pino	Nb	10^{-6}	$2.2 imes 10^{13}$	$2.9 imes 10^{-7}$	0.483	1.0
Stanford	⁸⁷ Rb	$2 imes 10^{-4}$	$3.5 imes 10^8$	$6.7 imes 10^{-2}$	1.91	$5.0 imes10^{-4}$

21

- * Interferometer experiments are sensors of ultra high sensitivity;
- * Dark matter candidates over a broad mass range can induce potential signals in interferometer experiments;
- Laser interferometers: ultralight DM oscillations and acceleration induced by macroscopic dark matter
 Matter-wave interferometers: ultralight DM, macroscopic dark matter and decoherence effect of sub-
- Matter-wave interferometers: ultralight DM, ma GeV dark matter scattering
- * Active field for more ideas

Thank you!

Heavy mediator and other processes

Yikun Wang, JHU, CIDM2024

$$\mathcal{F}_{\rm med}(q) = \frac{(m_{\chi} v_0)^2 + m_{\phi}^2}{q^2 + m_{\phi}^2} = \begin{cases} 1, & \text{heavy mediator} \\ (m_{\chi} v_0/q)^2, & \text{light mediator} \end{cases}$$

- * The rate prefers large momentum transfer: no coherent enhancement;
- * Most of the parameter space, for scalar mediator, has been excluded by various collider, astrophysical, and cosmological constraints.

• baryon and lepton number couplings

$$\mathcal{L} \supset \frac{g_B}{3} \bar{q} \gamma_\mu q Z_B^\mu$$

$$\int_{N}^{Z_B} \bar{\sigma} = \frac{3}{16\pi m_N^2} \left(\frac{g_B}{3}\right)^4$$

Heavy mediator scenario

Axion scattering

Fukuda, Shirai '21

$$\mathcal{L} \supset \frac{a^2}{8f_a^2} \sum_{N=p,n} \delta m_N \,\bar{N}N$$

$$\bar{\sigma} = \frac{\mu^2}{256\pi} \left(\frac{\delta m_N}{f_a^2}\right)^2 \frac{1}{m_a^2}$$

Heavy mediator scenario

Only probes f_a up to 100GeV

 $SNR = \frac{(\lambda)}{2}$

Decoherence s $V = e^{-s}$

* Quantum noise limit (QNL) $\sigma_V \equiv -$ See e.g. Bize et. al. 05'

* Over the experiment run time (1 year), the noise scales with the number of measurement: $\sigma_V \propto N_{
m meas}^{-1/2}$ with

Phase ϕ

* Quantum noise limit

 $\sigma_{\phi} \equiv \frac{1 \text{ rad}}{\sqrt{N_{\text{ind}}}}$

Yikun Wang, JHU, CIDM2024

$$\frac{(X - X_{\rm bkg})^2}{\sigma_X^2}$$

1
$$\blacktriangleright$$
 Atom interferometers: $N_{\rm ind} = N_{\rm atom}$ $\sqrt{N_{\rm ind}}$ \blacktriangleright Matter interferometers: $N_{\rm ind} = 1$

n
$$N_{\rm meas} = T_{\rm run}/t_{\rm exp}$$

* Some experiments phrase the phase sensitivity as the minimal measurable acceleration $\sigma_{\phi} = \frac{1}{4} m_{\text{ind}} \Delta x t_{\text{exp}} a_{\min}$

Direct Detections

* Prospects from superfluid helium for the NR and 2-phonon excitations, and the Al₂O₃ for phonon excitations, are compatible with certain AI proposals above 10 keV mass; Terrestrial bounds

* Meson decays $K \to \pi \phi, \quad B \to K \phi$

***** Fifth force

Astrophysical bounds

* Stellar emission

Light bosons coupling to electrons or nucleons can be emitted by stars, resulting in rapid cooling

* Dark matter self interaction (DMSI) If χ composes all of the DM in the universe, DMSI are constrained by cluster mergers and halo shaped observations to satisfy $\sigma_{\rm DMSI}/m_{\chi} < 1 - 10 \,\mathrm{cm}^2/\mathrm{g}$

The DMSI bound can be considerably relaxed if χ is a subcomponent of the total DM. we assume DM sub-component for light mediator Cosmological bounds

$$\Delta N_{\text{eff}} = \frac{4}{7} \sum_{i} g_i \left(\frac{g(T_{\nu L}^{\text{dec}})}{g(T_i)} \right)^{4/3} \xrightarrow{\text{with } y_n < 10^{-9} \text{, } \phi \text{ decouples before QCD}}{\chi \text{ cannot be produced thermally}} \qquad \Delta N_{\text{eff}} \simeq 0.06 \sum_{i} g_i$$

Yikun Wang, JHU, CIDM2024

Not in tension with current measurements, but will be easily probed by upcoming experiments.

Daily modulation

Directional signal:

DM velocity distribution in the lab frame: f

$$\mathbf{v}_{e}(t) = \|\mathbf{v}_{e}\| \begin{pmatrix} s\theta_{e} c\theta_{x} s\phi(t) - s\theta_{x} s\theta_{e} c\theta_{l} c\phi(t) + s\theta_{x} c\theta_{e} s\theta_{l} \\ c\theta_{e} s\theta_{g} s\theta_{l} c\theta_{x} - s\theta_{e} s\theta_{g} c\theta_{l} c\theta_{x} c\phi(t) - s\theta_{e} c\theta_{g} s\theta_{l} c\phi(t) - c\theta_{e} c\theta_{g} c\theta_{l} - s\theta_{e} s\theta_{g} s\theta_{x} s\phi(t) \\ s\theta_{e} c\theta_{g} c\theta_{l} c\theta_{x} c\phi(t) - c\theta_{e} c\theta_{g} s\theta_{l} c\theta_{x} - s\theta_{e} s\theta_{g} s\theta_{l} c\phi(t) - c\theta_{e} s\theta_{g} c\theta_{l} + s\theta_{e} c\theta_{g} s\theta_{x} s\phi(t) \end{pmatrix}$$

- * Choose the optimal oriental of Δx ;

Yikun Wang, JHU, CIDM2024

$$p_{\text{decoh}} = 1 - \exp\left[i\mathbf{q}\cdot\mathbf{\Delta x}\right]$$

$$f(\mathbf{v}) = \frac{1}{N_0} \exp\left(-\frac{(\mathbf{v} + \mathbf{v}_e(t))^2}{v_0^2}\right) \Theta(v_{\text{esc}} - \|\mathbf{v} + \mathbf{v}_e(t)\|)$$

* Can be used to isolate DM signal from isotropic backgrounds.