Bubble Misalignment Mechanism for Axions

Junseok Lee

Particle Theory and Cosmology Group, Tohoku U.

JCAP05(2024)122 arXiv:2402.09501 collaboration with Kai Murai, Fuminobu Takahashi, and Wen Yin Based on

Oct 16, 2024 CIDM2024, Sendai

First-order phase transition **Bubble Misalignment Mechanism for Axions** Dark matter production

We study the dynamics of axion dark matter in the first-order phase transition.

We see how bubbles produce axions.

Misalignment Mechanism

Preskill, Wise, Wilczek `83, Abbott, Sikivie `83, Dine, Fischler `83 Axion starts to oscillate after the Hubble parameter H becomes smaller than its mass m_{ϕ} .

This coherent oscillation acts as dark matter.

 $\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$

First-Order Phase Transition

First-order phase transitions appear in the theories beyond the standard model.

For example, the phase transition from the deconfined phase to the confined phase in the pure SU(N) Yang-Mills theory where $N \ge 3$ is known to be a first-order phase transition. B. Lucini, M. Teper and U. Wenger, `03, `05

There are various cosmological implications.

e.g.) baryogenesis, dark matter, and gravitational waves, \cdots

Discontinuous change of axion mass

We assume the axion mass arises from coupling to non-Abelian gauge fields that undergo a first-order phase transition from a deconfined to a confined phase.

How about the case where spatial inhomogeneity due to the bubbles becomes important? Focus on the case of m_0^{-1} < duration of phase transition < m_h^{-1} , H_h^{-1} .

Nakagawa, Takahashi, Yamada, Yin 22

$$\frac{\rho_{\phi}}{s} \simeq \frac{m_0^2 \phi_0^2}{T_b^3}$$

This corresponds to the case where the duration of phase transition is enough shorter than m_0^{-1} .

Bubbles expel axion waves

not oscillate due to the gradient energy around the wall.

Axion inside the bubble wall settles down to $\phi = 0$ by mass and does

"Bubble" Misalignment Mechanism

- 1. "Axion Shock Wave" (axion production)
- 2. "Fermi Acceleration" (energy enhancement)
- 3. Transmission into the Bubbles

JL, Murai, Takahashi, and Yin 2402.09501

Three Steps

Axion Shock Wave

of the axion abundance.

Axion settles down to $\phi = 0$ inside the bubble by mass. This produces energy excitations (axion shock wave) which result in the enhancement

Repeating scatterings accelerate axions

Expelled waves propagate outside the bubble and are scattered by another bubble. They obtain energy through repeating scatterings. (analogous to Fermi acceleration)

Axion waves transmit inside bubbles

When axion waves obtain sufficient energy by being accelerated, the wave can transmit bubble walls.

transmit when $\omega'_n > m_0$

where ω'_n is the energy of incident

Numerical Simulation

We performed the numerical simulations:

- Three-dimensional lattice simulation.
- The bubble is nucleated at each corner of the simulation box.
- For simplicity, we neglect the expansion of the universe as well as the axion mass before the phase transition.

 m_0^{-1} < duration of phase transition $\ll m_b^{-1}, H_b^{-1}$.

axion shock waves

accelerated axions

Viable parameters

The second (a)

$$(d1)$$

 $(d1)$
 $(d2)$
 $(b2)$
 $(b2)$
 $(b2)$
 $Second$ (a)
 $(b2)$
 $(b2)$
 $Second$ (b2)
 $(d1)$
 $(d1)$

Summary

- We studied the axion evolution in the FOPT, taking account of the bubble dynamics; "Bubble misalignment mechanism".
- axion shock wave and that Fermi acceleration occurs.
- the case of constant axion mass.
- Much to be done: analysis of realistic bubble nucleation, oscillon/I-ball formation, axion minicluster, production of dark photon dark matter, etc.

• We find that axion is expelled from the interior of the bubbles producing an

• If the axion oscillations are relevant only inside the bubbles during the phase transition, the axion abundance can be significantly increased compared to

back up

Axions

Axion is a scalar particle with shift symmetry,

$$\phi \to \phi + 2\pi f_{\phi}.$$

Its decay constant f_{ϕ} suppresses its interactions.

Axion obtains tiny mass m_{ϕ} by the explicit breaking of shift symmetry. Hawking `75, Banks and Dixon `88, Coleman `88, …

First-Order Phase Transition

Assume that axion mass arises through the coupling to such a gauge field. Topological susceptibility changes discontinuously during the transition.

potential:
$$V(\phi) = \chi(T) \left[1 - \cos\left(\frac{\phi}{f_{\phi}}\right) \right]$$

topological suceptibili

ity

$$\chi(T) = \begin{cases} \chi_0 & (T < \Lambda) \\ \chi_0 \left(\frac{T}{T_{\text{QCD}}}\right)^{-p} & (T \ge \Lambda) \end{cases}$$

$$m_{\rm b} \equiv \frac{\sqrt{\chi(T_{\rm b})}}{f_{\phi}} < m_0 \equiv \frac{\sqrt{\chi_0}}{f_{\phi}}$$

N.B.) flux conserves during transmission

Boundary condition,

 $\Phi_I[t',0] + \Phi_R[t',0] = \Phi_T[t',0] ,$ $\partial_{z'} \Phi_I[t',0] + \partial_{z'} \Phi_R[t',0] = \partial_{z'} \Phi_T[t',0]$

has solution.

 $\Phi_R[t', z'] = \frac{k'_I - k'_T}{k'_I + k'_T} \phi_0 \exp[i(\omega't' - k'_R z')] ,$ $\Phi_T[t', z'] = \frac{2k'_I}{k'_I + k'_T} \phi_0 \exp[i(\omega't' + k'_T z')] ,$ which satisfies $k'_{I} |\Phi_{I}[t',0]|^{2} = k'_{R} |\Phi_{R}[t',0]|^{2} + k'_{T} |\Phi_{T}[t',0]|^{2}.$

This implies the conservation of flux, flux = number density × group speed

 $= \omega' |\Phi|^2 \times (k'/\omega').$

Bubbles expel the axion waves

Consider the planar bubble wall at z' = 0 (wall-rest frame) and the plane wave propagating as

$$\Phi_{I} = \phi_{0} \exp[i(\omega't' + k'_{I}z')]$$
where $\omega' = \sqrt{k'_{I}^{2} + m}$

means it is evaluated in the wall-rest frame

 k_T' becomes imaginary when $\omega' < m_0$ meaning that the axion waves are totally reflected.

The evolution of the axion energy

 $m_0 t$

The momentum distribution

