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First-order phase transition

/

Bubble Misalignment Mechanism for Axions

N

Dark matter production

We study the dynamics of axion dark matter
In the first-order phase transition.

We see how bubbles produce axions.
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Misalignment Mechanism

Preskill, Wise, Wilczek “83, Abbott, Sikivie "83, Dine, Fischler 83

Axion starts to osclillate after the Hubble parameter H becomes
smaller than its mass m,,.

This coherent oscillation acts as dark matter.

¢ + 3H§b + m¢¢ = () v ( ¢) 3 Consider aIsT hogeneos iniTil condition ¢ = ¢, ,
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First-Order Phase Transition

First-order phase transitions appear Iin the theories beyond the standard
model.

For example, the phase transition from the deconfined phase to the
confined phase In the pure SUW) Yang-Mills theory where N > 3 Is

known to be a first-order phase transition. & tucini M. Teper and U. Wenger, 03, 05

There are various cosmological implications.

e.qg.) baryogenesis, dark matter, and gravitational waves, -
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Discontinuous change of axion mass

We assume the axion mass arises from coupling to non-Abelian gauge
fields that undergo a first-order phase transition from a deconfined to a
confined phase.

v ]
(@) 5m3¢2 inside outside
my > m, 7 bubble bubble
1 2 1.2
Embgb m¢ — m() m¢ — mb
0 ¢

@T =T, (bubble nucleation temperature)
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When mass changes homogeneously

Nakagawa, Takahashi, Yamada, Yin 22

2 12
V(g) —mip” Py My
let my' <HZ' <m! 2 07 — =

This corresponds to
the case where the

_ duration of phase

. transition Is enough

0 b ¢

How about the case where spatial inhomogeneity due to
the bubbles becomes important?

Focus on the case of m;' < duration of phase transition < m_"', H:'.

shorter than m; .
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Bubbles expel axion waves

Axion Inside the bubble wall settles down to ¢ =0 by mass and does
not oscillate due to the gradient energy around the wall.

V 1
@) S inside outside
" bubble bubble
LIy
2 ¢~ 0 ¢ = Py
0 Do ¢

@T =T, (bubble nucleation temperature)
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“Bubble” Misalignment Mechanism

JL, Murai, Takahashi, and Yin 2402.09501

Three Steps

1. "Axion Shock Wave” (axion production)
2. "Fermi Acceleration” (energy enhancement)

3. Transmission into the Bubbles
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Axion Shock Wave

AXxion settles down to ¢ = 0 Inside the bubble by mass. This produces

energy excitations (axion shock wave) which result in the enhancement
of the axion abundance.

% 45:450

distance
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Repeating scatterings accelerate axions

Expelled waves propagate outside the bubble and are scattered by
another bubble. They obtain energy through repeating scatterings.
(analogous to Fermi acceleration)

V ()

y2(1 + vz)a) + 2y2vk
2}/2\/60 + }/2(1 + vz)k
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AXion waves transmit inside bubbles

When axion waves obtain sufficient energy by being accelerated, the
wave can transmit bubble walls.

transmit when o/ > mj,

where w! Is the energy of incident

axion wave In the wall rest frame.

NN\

N marginally non-relativistic
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Numerical Simulation bubble

We performed the numerical simulations:
. Three-dimensional lattice simulation.

of the simulation box.
. For simplicity, we neglect the
expansion of the universe as well as ‘

. The bubble Is nucleated at each corner

the axion mass before the phase \k
transition.

L simulation box

-1 < duration of phase transition < me 1,H N
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Ei,t / total volume / my® phiy?
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axion shock waves
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accelerated axions
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Viable parameters for axions
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Summary

. We studied the axion evolution in the FOPT, taking account of the bubble
dynamics; “Bubble misalignment mechanism®.

. We find that axion is expelled from the interior of the bubbles producing an
axion shock wave and that Fermi acceleration occurs.

. It the axion oscillations are relevant only inside the bubbles during the phase

transition, the axion abundance can be significantly increased compared to
the case of constant axion mass.

- Much to be done: analysis of realistic bubble nucleation, oscillon/I-ball
formation, axion minicluster, production of dark photon dark matter, etc.
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AXions

AXion Is a scalar particle with shift
symmetry,

¢ — ¢+ 2nfy.

Its decay constant f; suppresses Its

Interactions.

Axion obtains tiny mass m, by the

explicit breaking of shift symmetry.

Hawking " 75, Banks and Dixon 88, Coleman 883, -

0

V(@)
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First-Order Phase Transition

Assume that axion mass arises through the coupling to such a gauge field.

Topological susceptibility changes discontinuously during the transition.

. @
potential: V(@) =x(T)]|1 —cos| — [ I
Jo 1 l S
topological 0.50
suceptibility X0 (T < A) °
P ~
(1) = T > |
g )(o( > (T = A) \
TQCD
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Boundary condition,

(I)][tlaO] T (I)R[t,aO] — (I)T[t,a()] ’
aZ/(I)I[t/,O] + aZ/(DR[t/,O] — 0Z/CI)T[Z’,O]

has solution,
/ / k k, / /
D1, 7] = 7 gbo expli(wt — kpz)] ,
I
2k;

ki + kr

D[, 7] = Qbo expli(wt + k;z7')] ,

22

N.B.) flux conserves during transmission

which satisfies
k| /17,0117 = kg | DgIE,011° + k| @4{1,01]°.

This implies the conservation of flux,

flux = number density X group speed

=w'|D \2 X (k'lw") .
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Bubbles expel the axion waves

Consider the planar bubble wall at z/ = 0 (wall-rest frame) and the plane
wave propagating as

Bubble wall

_ . ! 4/ ) /! 4

D, = pyexplilw’t + k;z7')] <
ki b,

where o’ = \/k’% +m; N
b
"means It I1s evaluated in the wall-rest frame
bR
k- becomes imaginary when o’ < m, meaning k' >
o My

that the axion waves are totally reflected. = z
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The evolution of the axion energy

E, , / total volume / my” ¢,
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The momentum distribution
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Axion shock wave
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