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Axion Hunting So Far
DFSZ sensitivity 
- ADMX 
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→ Probability of discovery  
is too low, so far 
Big money (huge magnet etc)  
“partially” solves problems  

New ideas and technologies 
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superconducting qubits 
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✓Large EDM 
 -> atoms 

✓Fast Readout 
 ->  
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0.1 nm 100 μm

Qubit is a giant artificial atom
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Figure 5.5: Qubit residual state population. Left. Pulse sequence for measuring qubit
excited state population requires applying a ⇡ge pulse and performing a |ei � |fi Rabi
oscillation, and the same measurement without the initial ⇡ge pulse. Right, Rabi oscillations
with ⇡ge are green dots and without ⇡ge are blue dots. Fits are in red.

presence of a photon. Therefore, accounting for heating errors is vital to accurately model

the measurement sequence. This is accomplished by performing two experiments to measure

the relative population of the qubit ground |gi and excited |ei states67.

Measuring the qubit spurious population requires using a Rabi measurement where the

qubit is driven for a variable amount of time so that it can undergo a coherent oscillation

between two states. In this experiment I use two higher order levels of the qubit and the

drive frequency is chosen to match the transition between them. First, I perform Rabi

oscillations between the second and third levels of the transmon (|ei $ |fi) by driving at

!ef = !ge + ↵. In the second experiment, I invert the population of |gi and |ei with a ⇡ge

pulse before performing the |ei $ |fi Rabi oscillation. Both sequences and resulting Rabi

oscillations are shown in Figure 5.5. The relative amplitudes of the resulting oscillations

gives the ratio of the |ei and |gi populations, r. Assuming the qubit temperature is low

enough that only the first two levels of the transmon are occupied, gives two equations:

r = P (|ei)
P (|gi) and P (|gi) + P (|ei) = 1. This yields the excited state population

n̄q = P (|ei) = r

r + 1
. (5.2)

47

Driving →  takes only 10 ns|0⟩ |1⟩

Qubit is so fast
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Figure 2

(a) The energy spectrum of a quantum harmonic oscillator (QHO). (b) The energy spectrum of the transmon qubit,
showing how the introduction of the non-linear Josephson junction produces non-equidistant energy levels. (c) Evolution
of lifetimes and coherence times in superconducting qubits. Bold font indicates the first demonstration of a given
modality. ‘JJ-based qubits’ are qubits where the quantum information is encoded in the excitations of a superconducting
circuit containing one or more Josephson junctions (see Sec. 2.1). ‘Bosonic encoded qubits’ are qubits where the quantum
information is encoded in superpositions of multi-photon states in a QHO, and a Josephson junction circuit mediates
qubit operation and readout (see Sec. 2.4). ‘Error corrected qubits’ represent qubit encodings in which a layer of active
error-correction has been implemented to increase the encoded qubit lifetime. The charge qubit and transmon modalities
are described in Sec. 2.1.1, flux qubit and the capacitively shunted flux qubit (‘C-sh. flux qubit’) are described in
Sec. 2.1.2, and fluxonium and gatemon modalities are described in Sec. 5. The codes underlying the ‘cat encoding’ and
‘binomial encoding’ are discussed in Sec. 4.3. ‘(3D)’ indicates a qubit embedded in a three-dimensional cavity. For
encoded qubits, the non-error-corrected T1 and T2 times used in this figure are for the encoded, but not error-corrected,
version of the logical qubit (see Refs. (11) and (12) for details). The references for the JJ-based qubits are (in
chronological order) (34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48); the semiconductor-JJ-based transmons
(gatemons) are Refs. (49, 50, 51); and the graphene-JJ-based transmon is Ref. (52). The bosonic encoded qubits in
chronological order are Refs. (53, 54, 11, 55, 12).

rials compatible with silicon CMOS manufacturing. Devices are placed inside a copper or

aluminum package that provides an engineered electromagnetic environment with requisite

signal lines and thermally anchored to the ⇡ 10mK stage of a dilution refrigerator. The

toolbox of superconducting circuits comprises resonators and bias lines, in addition to the

qubits themselves. The properties of these building blocks can be engineered by varying

circuit parameters and interconnected with tailored couplings.

Josephson junction:
Superconducting
qubits are based on
the Josephson
junction, which
consists of two
superconducting
electrodes that are
separated by a thin
insulating barrier,
allowing for the
coherent tunneling
of Cooper pairs,
resulting in a lossless
non-linear inductor.

2.1. Devices based on superconducting tunnel junctions

The quantum harmonic oscillator (QHO) shown in Fig. 2(a) is a resonant circuit comprising

a capacitor and an inductor with resonance frequency !c = 1/
p
LC. For su�ciently low

temperature (kBT ⌧ ~!c) and dissipation (level broadening much less than ~!c), the

resulting harmonic potential supports quantized energy levels spaced by ~!c. However, due

4 Kjaergaard et al.
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Qubit is in ultra low noise environment
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FIG. 3. Dispersive coupling between a transmon and a superconducting resonator. (a) Lumped-element representation of a
Josephson junction and a sketch of its structure, which consists of two layers of aluminium (gray) that are separated by an aluminium
oxide tunnel barrier (white). (b) A SEM image of a bridge-free junction. Image credit: Kyle Serniak (Yale University). (c) Lumped-
element representation of a LC circuit capacitively coupled to a single-junction transmon and the associated the potential of each mode
and the dressing of the energy levels due to the dispersive interaction. (d),(e) Two examples of physical realizations of a transmon
device dispersively coupled to a superconducting cavity in either the planar (d) or 3D configuration (e).

provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of

040202-5
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Superconducting Qubits第 9章 量子実験系における種々の結合 123

図 9.5: LC共振器（左）と本章で扱う超伝導量子ビット（右）

というものになる。Q の共役となる正準変数は Φ となることはすぐにわかるので、
HamiltonianHLCは

HLC =
Q2

2C
+

Φ2

2L
(9.2.6)

となることがわかる。第 1項がキャパシタのエネルギー、第 2項がインダクタのエネル
ギーになっていることがわかるだろう。
期待通りQと Φを正準変数とする調和振動子の形にかけたので、これらを演算子と

みなし、交換関係 [Q,Φ] = ih̄を要請することで量子化の手続きが完了する。共振器光
子の生成・消滅演算子を

a =
1

2h̄

√
L

C
Q+

i

2h̄

√
C

L
Φ (9.2.7)

a† =
1

2h̄

√
L

C
Q− i

2h̄

√
C

L
Φ (9.2.8)

とすることで、交換関係は [a, a†] = 1となりHamiltonianは
HLC = h̄ωLC

(
a†a+

1

2

)
(9.2.9)

となる。

9.2.2 超伝導量子ビット
次に、LC共振器のインダクタを Josephson接合で置き換えた図のような回路を考え

よう。Josephson効果において、絶縁体を挟んだ超伝導体間の位相差を θ、Josephson

接合をまたぐ電流と電圧を I、V として
I = I0 sin θ, V =

h̄

2e

dθ

dt
(9.2.10)

が成立する。ここで磁束量子 Φ0 = h/2eを用い、磁束を ΦJ = (θ/2π)Φ0と定義すれば
I(t) = I0 sin

(
2π

ΦJ

Φ0

)
, V =

dΦJ

dt
(9.2.11)

|1⟩

|0⟩

|2⟩

ℏωLC

ℏωLC

|3⟩

+4ℏαq

+2ℏαq

ℏωLC +6ℏαq

ℋ = ℏωqa†a +
ℏαq

2
a†a†aa

- LC resonator which L is nonlinear  
Nonlinearity makes anharmonicity ( ) 

→ Easy control from   
- Nonlinearity comes from Josephson junction  

αq

|0⟩ → |1⟩ ジョセフソン接合

φ

N

Ψ1 Ψ2

超伝導体1 超伝導体2

Brian Josephson
(1940–)

©Nobel Foundation
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We are making qubit ourself

PPE(Personal 
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u PPE...クリーンルーム内で
作業する際の装備品のこと

u 基本的には武田・EPFLと同
様

u BAY(ブロック)ごとに手袋
や紙ワイプ,ノートがまと
めておいてあるのは嬉しい

u (スタッフの人を見ても) 実
は服装についてはあまり気
にしていないのでは,,,

Design

TE101 mode simulation
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The same design and material of the actual cavity and qubit

Cavity frequency ≒ Qubit frequency → Mode crossing is maximum.

Interaction Maximum Interaction Minimum

here!

19th Patras Workshop
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Qubits are utilized for DM searches
Direct excitationSingle photon  

counting
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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive

2
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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive
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Cavity QED

ℋ/ℏ = (ωc + g2/Δ) σz/2 + (ωq + g2/Δσz) a†aQubit

Cavity

ℋ/ℏ =
ωq

2
σz + ωca†a + g(σ+a + a†σ−)

QubitCavity Interaction

|g⟩

|e⟩

Qubit Cavity Cavity × Qubit

|n = 1, e⟩

|n = 1, g⟩

|n = 0, g⟩

|n = 0, e⟩

|n = 0⟩

ωc ω(e)
c

ω(g)
c

ωq

ω(g)
c ≠ ω(e)

c

|n = 1⟩

Δ = ωc − ωq

E-field



12

Dispersive readout

ℋ/ℏ = (ωc + g2/Δ) σz/2 + (ωq + g2/Δσz) a†a
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2
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|g⟩
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Cavity frequency

- Dispersive readout  
the standard method for quantum computing 

- Direct excitation experiments utilize this interaction
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Lamb shift
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Lamb shift experiment
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Lamb shift simulationTE101 mode simulation

6

The same design and material of the actual cavity and qubit

Cavity frequency ≒ Qubit frequency → Mode crossing is maximum.

Interaction Maximum Interaction Minimum

here!

19th Patras Workshop
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Direct Excitation
1. Dark photon converts to E-field by  
any metal surfaces (ex. shield of qubits) 

2. Qubit state is driven from |0> to |1> by  
the E-field if the qubit frequency matched  
to the E-field frequency  
~ Dark photon Compton frequency   

3. The state is read out by dispersive readout 
(exactly the same way as quantum computing) 
 

Courtesy of Karin Watanabe
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Setup We can do both experiment with the same setup!
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Setup We can do both experiment with the same setup!

Measurement methods

16

Well-established measurement methods in haloscope experiments  

19th Patras Workshop
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Lamb shift experimentsTest for Tuning qubit’s frequency by DC current

10

Tunable qubit frequency

Qubit Frequency

Phase

19th Patras Workshop

Cavity frequency 
Courtesy of Kan Nakazono
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Lamb shift experimentsThe Parameters in this experiment 

22

The parameters of our setup

19th Patras Workshop

Courtesy of Kan Nakazono
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Lamb shift experiments
No statistical significance

Results

24

90% exclusion limit of kinetic mixing χ 

χpolarized~10-12

19th Patras Workshop
Courtesy of Kan Nakazono
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Future plan for Lamb shift
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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive
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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive

2

Aaron et.al.
PRL 126 141302 (2021)
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Direct Excitation Experiment
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discrimination

|0⟩ |1⟩
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Direct Excitation Experiment

Courtesy of Karin Watanabe
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Future plan for direct excitation 

Quantum circuit.—Now, we discuss how the signal rate
can be significantly enhanced when nq ≫ 1. We consider a
quantum circuit consisting of nq sensor qubits which
interact with DM oscillation. The state can be expressed
by a linear combination of states of the following form:

jΨi ¼ jψ1i ⊗ jψ2i ⊗ " " " ⊗ jψnqi; ð8Þ

where jψ ii denotes the state of ith qubit. The frequencies of
the sensor qubits are assumed to be all equal. In our
discussion, we consider the case that qubits used for the
DM detection can be initialized, measured, and evolved
through standard gates like the Hadamard gate and CNOT
gate. (See Appendix A for the gate operations used in our
analysis.)
An example of quantum circuits for detecting the DM

signal is shown in Fig. 1. This is a quantum circuit for
quantum-enhanced parameter estimation [10–12]. Our
circuit consists of only one-dimensional nearest neighbor
interaction between qubits with OðnqÞ gates. We assume
that t1 − ti ∼ tf − t2 ≪ t2 − t1, so that the effect of DM is
mainly in time interval t1 ≤ t ≤ t2. We also assume that the
coherence time of the qubits is long enough, so that
the coherence time of the system, τ, is determined by
the coherence of the DM and does not scale with n−1q . We
expect that the coherence time of the qubit system longer
than that of DM is achievable in future quantum computer
platforms with sizable nq. The entangled qubit system is
usually more fragile than the individual nonentangled ones
and the coherence time of the entangled state may be
∼τq=nq, where τq is the coherence time of a single qubit
[16]. Even in such a case, the following discussion holds as
far as nq ≲ τq=τDM (with τDM being the coherence time of
the DM).
In order to understand the enhancement mechanism of

the signal, it is instructive to consider the case that α ¼ 0.

For α ¼ 0, the eigenstates of UDM are jþi and j−i,
satisfying UDMj&i ¼ e&iδj&i, where

j&i≡ 1ffiffiffi
2

p ðjgi& jeiÞ: ð9Þ

Thus, considering the states with nq qubits, j&i⊗nq , they

evolve as j&i⊗nq → U⊗nq
DM j&i⊗nq ¼ e&inqδj&i⊗nq ; the phases

from nq qubits coherently add up. Our quantum circuit
measures this phase as the relative phase between jþi⊗nq

and j−i⊗nq by using the superposition of these states.
With the circuit, the state evolves as follows. First, all the

qubits are prepared in the ground state at t ¼ ti. At t ¼ t1,
the state of sensor qubits is given by

jΨðt1Þi ¼
1ffiffiffi
2

p
"
jþi⊗nq þ j−i⊗nq

#
: ð10Þ

With the effect of the DM, the state at t ¼ t2 becomes

jΨðt2Þi ¼
1ffiffiffi
2

p
"
einqδjþi⊗nq þ e−inqδj−i⊗nq

#
: ð11Þ

The quantum operation from t ¼ t2 to tf brings the phase
information to the first qubit:

jΨðtfÞi¼
1ffiffiffi
2

p ðeinqδjþiþe−inqδj−iÞ⊗ jþi⊗ðnq−1Þ

¼ ½cosðnqδÞjgiþ isinðnqδÞjei(⊗ jþi⊗ðnq−1Þ: ð12Þ

The probability to observe the excitation of the first qubit is

Pðα¼0Þ
g→e ¼ sin2ðnqδÞ ≃ n2qδ2; ð13Þ

where, in the last equality, we have used nqδ ≪ 1. Notably,
the probability is proportional to n2q, indicating a possible

FIG. 1. Quantum circuit for the DM detection. The gate with H represents the Hadamard gate, while that with “•” and “⊕” connected
by the line is the CNOT gate (where “•” is the control qubit). The UDM represents the evolution with the effect of DM.

PHYSICAL REVIEW LETTERS 133, 021801 (2024)

021801-3

Moroi +, PRL 133, 021801 

Entangling  qubits with CNOT gates 
leads sensitivity increase by  

N

N2

Figure 1: Projection plot regarding the 5� sensitivity of axion-photon coupling ga��. We
assume a year experiment with the coherence time of the system determined by that of DM
(⌧ = 106/ma). We assume static magnetic field B0 = 5 T applied uniformly pointed along
the cylinder axis of the shielding cavity. The dark and light green (blue) contours correspond
to the reach with  = 1 (100) using nq = 1 and nq = 100, respectively, where the individual
measurement protocol is applied. On the other hand, the orange contour corresponds to
the reach from using entangled qubit sensors with nq = 100 and  = 100 assumed. The
readout error rate and gate operation error rate are both assumed to be 0.1%. The dark
grey area shows the astrophysical constraint from the observation of the stellar population
in the Globular Clusters [41], while the grey area shows the constraints from Haloscope
experiments [42]. The dotted and dashed blue lines are parameter regions suggested by the
KSVZ model and DFSZ model of QCD axions, respectively.

4.3 Detection protocol with entangled qubits

The sensitivity may be drastically improved if we use a multiple of entangled qubits. Such
a possibility has been pointed out in Ref. [8] of which we briefly explain the idea here. We
concentrate on the case without the strong mode mixing between the shielding cavity and
qubits. We also assume that the coherence time of individual qubits is so long that the
coherence time of the system is determined by DM and not by the qubits.

In Fig. 3, for readers’ convenience, we show the quantum circuit which explains the
procedure of detecting axion DM using entangled qubits, proposed in Ref. [8]. We assume
that t1� ti ⇠ tf � t2 ⌧ t2� t1, so that we have to consider the e↵ect of DM on the evolution
of the qubit system only when t1  t  t2; t2 � t1 will be set to be around the coherence
time of the system ⌧ . To see the enhancement mechanism, let us illustrate the case when

11

Sichanugrist+  
arxiv  
2407.19755

Off course we want to search 
axion 
→ Applying magnetic field  
    in parallel to O(10) T 
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Towards Axion Search
Photon transfer
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Figure 1: Schematic of the axion search setup: (a) The haloscope cavity, located in a 2T mag-
net, connects to the detector via a fixed antenna port and features cryogenic frequency tuning
through three sapphire rods attached to a nano-positioner. (b) The SMPD, a superconducting
circuit with �/2 coplanar waveguide resonators linked to a transmon qubit, is positioned ap-
proximately 50 cm above the magnet and connects via standard coaxial cables. Its frequency
is adjustable by threading the flux through a SQUID embedded in the buffer resonator. Upon
activating the four-wave mixing process, the qubit cycles through photon detection phases. (c)
The detector center frequency alternates between resonance (red) and off-resonance (grey) set-
tings relative to the haloscope’s frequency (blue) in differential mode. (d) Measurement records
from the photon counter display clicks over time, with color indicating the detector’s frequency
setting.

6

arXiv:2403.02321

B-field tolerant qubits

B-field

Pros: Easer, Cons: Potentially lossy Pros: No loss 
Cons: More difficult

Qubits worked at least 1T  

J. Krause et.al., Phys. Rev. Applied  
17, 034032 (2022)
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Difficulty

- Critical field  
- Suppression of Josephson effect

Nb, Al, Ta

Al
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Solution: All-nitride qubits

plotted as a function of the delay time (τ) in Figs. 3 and 4.
Figure 3a shows the data for energy relaxation, which is well fitted
by an exponential decay function expð"τ=T1Þ, giving
T1 ¼ 18:25 ± 0:91 μs. In addition, we repeated the T1 measure-
ment 100 times over a period of 33 hours to observe the T1
fluctuations of our nitride qubit (see Fig. 3b). The obtained values
range from 8 to 20 μs, and the histogram of the T1 data is well
fitted by a Gaussian distribution with peak center !T1 ¼ 16:3 μs
and standard deviation σT1 ¼ 1:73 μs as shown in Fig. 3c. These
value of T1 are the highest among all-nitride qubits. Currently
they are lower than those of Al-based C-shunt flux qubits coupled
to two-dimensional resonators on Si substrates30 (showing
T1 = 55 μs). However, there is still room for improvements in a
number of aspects to increase T1 further, and the significant
improvement over state-of-the-art all-nitride qubits is an
important step in that direction.

The temporal variation of T1 is usually explained by
quasiparticle fluctuations30 and instability of TLS defects34,35.
When compared to Al-based single-junction Xmon-type trans-
mon qubits in ref. 35 (where T1 histograms show rather broad
Gaussian distributions with σT1 % 20% of !T1, with parameters
!T1 ¼ 46:18 μs and σT1 ¼ 10:24 μs for one sample, and !T1 ¼
70:72 μs and σT1 ¼ 14:31 μs for the other sample), we found that
the T1 data of our nitride qubit show little temporal variation,
σT1 % 10% of !T1. Such a narrow Gaussian distribution is also
observed in Al-based C-shunt flux qubits30 and discussed as an
indication that quasiparticles did not strongly influence this
device. We therefore believe that our nitride qubit is also not
strongly affected by quasiparticles. The instances of large
deviation in T1 to lower values outside the Gaussian peak in
Fig. 3c, i.e., the outliers, can be explained by weakly coupled TLS
defects in the remaining silicon dioxide (SiO2) after buffered

hydrogen fluoride (BHF) treatment in our fabrication process. To
reach a quantitative understanding of the degree to which two-
level system could be limiting the qubit coherence time, more
experiments are needed. Such an investigation is beyond the
scope of this work and could be the subject of future work.

Phase relaxation times, T*
2 and T2. We have measured the

coherence times for phase relaxation from Ramsey and spin-echo
experiments as shown in Fig. 4. The signals, which oscillate at the
detuning frequency δω ¼ ω01 " ωd

!! !!=2π ¼ 5 MHz (where ωd=2π
is the drive frequency), can be fitted by exponentially decaying
sinusoidal functions with relaxation times T*

2 ¼ 3:33 ± 0:30 μs
and T2 ¼ 23:2 ± 5:21 μs (see Fig. 4a, b). The T*

2 and T2 mea-
surements are also repeated 100 times along with the T1 mea-
surements. The resulting histograms are shown in Fig. 4c, d. The
observed values of T*

2 are in the range 1:2"4:4 μs, and the cor-
responding Gaussian fit has a center value !T*

2 ¼ 3:25 μs and a
standard deviation σT2* ¼ 0:44 μs. The T2 values, obtained by
applying an additional π pulse between the π=2 pulses to
decouple low frequency noise, are remarkably higher and lie in
the range 14"41 μs. The obtained center value of the Gaussian
distribution is !T2 ¼ 21:5 μs.

Main factors behind the enhanced coherence time. Compared
with the NbN-based qubit epitaxially grown on a MgO substrate
(T1 & T2 & 0:5 μs)25, the obtained coherence times for the qubit
on a Si substrate (!T1 ¼ 16:3 μs and !T2 ¼ 21:5 μs as the mean
values) represent a significant improvements, namely 32-fold
increase in T1 and a 43-fold increase in T2. To support the
argument that the substrate material is responsible for this

Fig. 3 Energy relaxation time T1 and its temporal variation. a T1 decay profile with an exponential fit (solid line) with T1 ¼ 18:25±0:91 μs. The inset
shows the pulse sequence for T1 measurement consisting of a π pulse (having a Gaussian envelope) with a 40 ns duration at ω01 and a readout pulse with a
400 ns duration at ωr . bMultiple T1 values obtained from 100 measurements performed over 33 h, which show the temporal stability of T1. Here the error-
bars correspond to the standard deviation calculated in the fitting of each decay profile. c Histogram of the T1 values with a Gaussian fit with center value
!T1 ¼ 16:3 μs and standard deviation σT1 ¼ 1:73 μs (Solid line).
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FIG. 4: Perpendicular upper critical field Hc2 measured
as a function of temperature for a 240 nm thin film
deposited at optimal conditions. Inset: Normalized

magnetization of the same film as a function of applied
field at temperatures close to Tc.

Hc2(T ) =
�0

2⇡⇠2(T )
. (2)

Strictly speaking, this dependence should be valid only
in the critical region close to superconducting Tc, but in
practice, it can be applied even deep into the supercon-
ducting state. From the upper critical fields measured
for film grown at optimal conditions (Fig. 4), the ex-
trapolated perpendicular critical field was determined to
be Hc2(0) = 319 kOe and the estimated coherence length
is ⇠(0) = 3.2 nm, slightly smaller than the bulk value of
5 nm reported in literature[27, 28]. This reduced value
of ⇠(0) is the result of the renormalization of coherence
length due to short electron mean-free path in disordered
sputtered films.[29]

B. Suppression of superconductivity in ultra-thin
films

As many applications of superconducting devices ne-
cessitate for the material to be in a form of a thin film,
we also study the dependence of superconducting and
electronic properties as a function of film thickness. It
is well known that in NbN the superconducting state is
suppressed as the film becomes thin,[30–32] and it is usu-
ally explained either by weak localization[33–35], electron
wave leakage[36] or surface contribution to the Ginzburg-
Landau free energy of the superconductor.[37]

One way to determine which model best fits our experi-
mental data is to look at the dependence of the supercon-
ducting Tc on film thickness (Fig. 5). In electron leakage
model, the the electron wave function is considered to be
quantized in the direction perpendicular to sample sur-
face. This quantization leads to reduction in density of

FIG. 5: Dependence of superconducting Tc on inverse
film thickness. Experimental data is plotted in blue
circles and lines show best fits of di↵erent models:
Green solid line is a fit of Eq. (4), dashed orange

corresponds to fit of Eq. (3) and blue dashed line is a fit
of Eq. (8).

states and allows for the wave function to leak outside
of the superconductor. The simplified theory predicts a
behavior of superconducting Tc as[36, 38]:

Tc

Tc1
= exp


�b

N(0)V d

�
, (3)

where Tc1 is the critical temperature of bulk, b is
the characteristic length of electron wave leakage, ap-
proximately equal to the electron Fermi wavelength, and
N(0)V is the BCS coupling. If we assume N(0)V =
0.32[38], the estimated b = 1.14 Å is reasonably close to
the reported values for NbN. However, considering the
disordered nature of sputtered films, one might want to
use a version of Eq. (3) corrected for presence of defects
and film breakup:

Tc

Tc1
= exp


�1

N(0)V

✓
b

d
+

c

d2

◆�
, (4)

where c is a term describing contribution of defects
and is typically in the range from 0 to 20 Å2. Usage of
parameters reported on previous films [38] leads to quan-
titative behavior similar to the uncorrected theory. Re-
moving this restriction allows for a quantitatively better
fit, with estimated values b = 0.73 Å and c = 2.84 Å2.
The length of b is not significantly shorter than the re-
ported values and c falls within expected range, meaning
that the estimate is not unphysical. The di↵erence from
values reported by Kang et. al might be explained by dif-
ference in the microstructure of our films, as evidenced
by di↵erent sheet resistance of thin films produced by our
IBAS method.
Considering the approximately linear trend of super-

conducting Tc(d), a variational result from modified

 6T
← 32 T at 0 K

T. Polakovic, APL Materials 6 (2018) 076107

NbN 240 nm film

as the area ratio of the small JJ relative to the two larger JJs
α ¼ 0:358, Josephson energy EJ=h ¼ 140 GHz (where h is the
Plank constant, and the corresponding critical current density of the
larger junctions in the qubit is 38.6 A cm−2), and charging energy
EC=h ¼ ðe2=2CΣÞ=h ¼ 0:244 GHz. Here, the total qubit capaci-
tance (CΣ) is 79.6 fF, which includes a shunt capacitance CS = 52.8
fF and the total junction capacitance of the flux qubit CJ ¼ 26:8 fF
(the detailed parameters are also found in the Methods).

Energy relaxation time, T1, and its temporal variation. Qubit
coherence properties were obtained from time-domain mea-
surements. At the flux-insensitive point, we measured the energy
relaxation time (T1), Ramsey decay time (T*

2), and spin-echo
coherence time (T2) by applying the corresponding control-pulse
sequences (see the insets in Figs. 3a, 4a, b). The qubit’s excited
state population is measured by a digitizer and ensemble-
averaged over 6:5 ´ 104 repetitions. The resulting signal is

Fig. 2 Spectroscopy of resonator and qubit. a Spectrum of resonator microwave transmission (S21) with varying probe frequency and normalized flux
(Φ=Φ0). b The line profile of the resonator’s spectrum at flux bias Φ=Φ0 ¼ 0:5 with a Lorentzian fit (solid line). c Qubit spectra obtained using dispersive
readout. The dashed line is a simulation curve for the qubit transition from the ground state to the excited state (ω01=2π). The qubit transition frequency
has a minimum value of 6.61 GHz at the flux-insensitive point.

Fig. 1 All-nitride C-shunt flux qubit consisting of epitaxially grown NbN/AlN/NbN Josephson junctions on Si substrate. a a photograph of the qubit chip
mounted into the sample package, b Laser scanning microscope image of the capacitively shunted flux qubit coupled to a half-wavelength (λ/2) CPW
resonator made of NbN/TiN on a Si substrate. The inset shows a magnified image of a false-colored flux qubit structure with three NbN/AlN/NbN
Josephson junctions (marked as JJ1, JJ2, and JJ3). c Scanning electron microscopy images corresponding to the three JJs taken after the qubit
measurements. d The thickness profile of qubit taken from the laser scanning microscope system. The displayed scales are in μm. e Cross-sectional
schematics of the part indicated by the blue star and dashed line in b. The JJ parts are marked by the orange dotted ellipses.
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Suppression of Josephson Effect

12 - JOSEPHSON JUNCTIONS IN A MAGNETIC FIELD 319 

We call �J the flux of the magnetic field that crosses the whole of the junction from 
� a/2 to  a/2, i.e. the insulating layer plus the LONDON regions that develop on 
each side (see Fig. 12.4), 
 �J  Bext Da.  (12.13) 

The expression for the phase difference at ordinate y then becomes 

 �( y)  �(0)  2� �J
�0

y
a

 (12.14) 

and the JOSEPHSON current density crossing the barrier at ordinate y (rela-
tion 10.14) can be written 

 
 
j x

J ( y)  jc sin�(y)  jc sin �(0)  2� �J
�0

y
a

�
��

�
	�
.  (12.15) 

The total intensity of the JOSEPHSON current crossing the insulating barrier can be 
obtained by integrating the current density over the whole cross-section 

 
  
I  c jc sin�( y)d y

�a/2
a/2
�  Ic sin � �J

�0

�
��

�
�


� �J
�0

�

	

�
��
sin�(0).  (12.16) 

This means that for a given magnetic flux �J, the junction can adjust its phase �(0) 
in order to transport, in either direction, any value of the current intensity lying 
between 0 and an upper limit Imax given by 

 
 

Imax (�J )  Ic  sin � �J
�0

�
��

�
��

� �J
�0

.   (12.17) 

Except for zero field, where it takes its greatest value, the intensity Imax reduces to 
zero for field fluxes �J equal to an integer number of fluxons. We remark that the 
profile of Imax in Figure 12.5 is formally identical to the diffraction figure of light 
by a slit under the FRAUNHOFER conditions (parallel incident beam and screen infi-
nitely distant). 

Figure 12.5 
Maximum intensity that can be borne 

by a short JOSEPHSON junction 
subject to a magnetic field 

The profile of Imax resembles a diffraction 
pattern of light by a slit under the 

FRAUNHOFER  conditions. Except at the 
origin, Imax is zero for flux values �J 

equal to an integer number of fluxons. �� �� �� � � � � �����

�

I
���I	�������������

320 SUPERCONDUCTIVITY 

Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of �J are represented in Figure 12.6. 
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Figure 12.6 - Profiles of the JOSEPHSON current density  

across the insulating layer of a short JOSEPHSON junction subject to magnetic field Bext 
(a, b, c, d) distribution of the JOSEPHSON current across the insulator when the intensity 
takes its maximum possible value Imax compatible with four different values for �J . 
(d, e) for the same value of �J the junction “adjusts” the phase �(0) to the current  
intensity I that is injected: the maximum intensity for (d), or zero for (e). 

»  They are sinusoidal (see eq. 12.15) with the number of periods equal to the num-
ber of fluxons (whether or not it is integer) that �J contains. The periodicity is 

 
 
Y  a�0

�J
.  (12.18) 

»  The magnetic field flux threading a circuit of length Y (in the y-direction) and 
closed beyond the LONDON currents (Fig. 12.7) is one fluxon since by combining 
(12.13) and (12.18) we find 

 Y DBext  �0 .  (12.19) 

»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 

10 T = 1 flux quantum / (14 nm)^2 
→ Have to keep the cross-section to the magnetic field small

320 SUPERCONDUCTIVITY 

Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of �J are represented in Figure 12.6. 
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»  The magnetic field flux threading a circuit of length Y (in the y-direction) and 
closed beyond the LONDON currents (Fig. 12.7) is one fluxon since by combining 
(12.13) and (12.18) we find 

 Y DBext  �0 .  (12.19) 

»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 
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From “Superconductivity An introduction” Mangin - Kahn
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Current Status

SC-magnet 
3T, 1-inch bore

TiN 2D  
resonator
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Summary
- Superconducting qubit is a promising platform for DM search 

- We did two experiments 
- Direct excitation (Lead by Karin Watanabe) 
- Lamb shift tuning (Lead by Kan Nakazono)  

- We are working on  
- Larger electric dipole coupling qubits for wider tuning range  
  for Lamb shift  & better sensitivity for direct exitation 
- Applying strong magnetic field in parallel to thin film for axion 


