

Current status of sensitivity improvement of Dark matter Axion search with riNg Cavity Experiment (DANCE)

<u>Hinata Takidera^A, Hiroki Fujimoto^A, Yuka Oshima^A, Satoru Takano^B, Kentaro Komori^C,</u> Jun'ya Kume^{D,E,C}, Soichiro Morisaki^F, Koji Nagano^G, Tomohiro Fujita^H, Ippei Obata^I, Atsushi Nishizawa^J, Yuta Michimura^C, Masaki Ando^{A,C}

Dept. of Phys., UTokyo^A, Dept. of Phys., Science Tokyo^B, RESCEU^C, UNIPD^D, INFN^E, ICRR^F, LQUOM^G, Dept. of Phys., Ochanomizu Univ.^H, Kavli IPMU^I, ADSE, Hiroshima Univ.^J

CIDM2024, October 16th, 2024

Abstract

- Laser interferometer
- Axion-photon interaction DANCE Act-1: prototype experiment started in 2019
- Non-simultaneous resonance degrades sensitivity
- Currently operating for simultaneous resonance

DANCE: sensitive broadband axion search with a bow-tie optical ring cavity

Dark matter

Subaru telescope

Axion and Axion-Like-Particles (ALPs)

- Axion is suggested to solve strong CP problem on Quantum Chromo Dynamics (QCD)
- Various Axion-Like-Particles (ALPs) is predicted
- Axion weakly interacts with photon, electron, proton, neutron
- Very light particles \rightarrow Behave like waves

$$f_a = 242 \text{ Hz} \left(\frac{m_a}{10^{-12} \text{ eV}} \right)$$

• Many experiments have utilized the axion-photon conversion under magnetic field (Primakoff effect). However, axion has not been observed yet.

Previous searches

Relation between axion mass and frequency

$$f_a = \frac{m_a}{2\pi\hbar} \text{ Hz}$$

- Solid line is upper limit
- Dotted line is target sensitivity
- White region is unexplored

Axion-photon interaction

and right-handed circularly polarized light

$$c_{\rm L/R}(t) = 1 \pm \frac{g_a \gamma c}{2}$$

Phase velocity

Axion-photon coupling

A rotation of linearly polarized light

- Axion-photon interaction induces phase velocity difference between left-handed
 - $a_0 m_a$ $-\sin\left(m_a t + \delta_{\tau}(t)\right)$ 2k**Axion field** Axion mass
 - Axion produce p-polarization (Axion signal) • Period of rotational oscillation \rightarrow Axion mass • Amplitude of rotational oscillation \rightarrow Axion-photon

How to amplify the axion signal

Rotation of polarization is small Photo detector for short optical path

Extend optical path with a optical linear cavity However, rotation of polarization can not be amplified because it is flipped by reflections

Extend optical path with a bow-tie ring cavity Rotation of polarization can be amplified because the flip is canceled by reflections on both two mirrors * Without magnetic field

DANCE

DANCE (Dark matter Axion search with riNg Cavity Experiment) • Dark matter axion search with laser interferometer

- Bow-tie optical ring cavity

Measure the amount of modulated p-polarization (Axion signal) by amplifying it with a bow-tie optical ring cavity

Target sensitivity of DANCE

- Shot noise limited
- Assume all dark matter is axion
 - L: Round-trip
 - $\mathcal{F}_{s/p}$: Finesse (s/p-pol.)
 - P_{in} : Input power

Able to conduct a sensitive axion search by improving parameters

First observation of DANCE Act-1

- DANCE Act-1: prototype experiment started in 2019
- First observation was conducted in May 18-30, 2021
- Obtained the rotation angle of linear polarization \rightarrow Data analysis

Y. Oshima et al., Phys. Rev. D 108, 072005 (2023).

wer	242(12) mW
-pol.)	$2.85(5) \times 10^3$
-pol.)	195(3)
erence	3.03(2) deg

10

Result and consideration

- Upper limit was worse than target sensitivity by 7 orders of magnitude

• First demonstration of dark matter axion search with a bow-tie optical ring cavity

- Improve classical noises \rightarrow Reach current shot noise limit
- Improve observation time, input power, finesse
- Achieve simultaneous resonance between s-pol. and p-pol.
- → Reach target sensitivity

Resonant frequency difference between s-pol. and p-pol.

Simultaneous resonance

Oblique incidence \rightarrow Resonant frequency difference \rightarrow Degrades sensitivity

axion search

- **DANCE** with an auxiliary cavity
- **DANCE** with zero-phase-shift mirror and ECDL $(\mathbf{2})$

Simultaneous resonance is necessary to conduct a sensitive broadband

1) DANCE with an auxiliary cavity

- Achieved simultaneous resonance for the first time in November 2021 by adding an auxiliary cavity to compensate for the reflection phase difference between s-pol. and p-pol.
- p-pol. is resonant in an auxiliary cavity by tuning PZT

H. Fujimoto et al., J. Phys. Conf. Ser. 2156, 012182 (2021).

1) DANCE with an auxiliary cavity

- Need to reduce the optical loss in an auxiliary cavity

Improved by more than 2 orders of magnitude than first results of DANCE Act-1

Input power	20 mW
Finesse (s-pol.)	549(3)
Finesse (p-pol.)	36.8(2)
Phase difference	0 deg

(2) DANCE with zero-phase-shift mirror and ECDL

New method of simultaneous resonance

is 0 deg at specific wavelength **ECDL**: Select wavelength by changing angle of IF

- **Zero-phase-shift mirror**: Reflection phase difference between s-pol. and p-pol.
- → Tuning wavelength to cross point of zero-phase-shift mirror with an ECDL

(2) DANCE with zero-phase-shift mirror and ECDL

phase-shift mirror with a folded cavity

- 1. Proof of principle of simultaneous resonance
- 2. Suppress time fluctuation of reflection phase difference which needs to conduct long term axion dark matter search

Folded cavity

Evaluation of reflection phase difference between s-pol. and p-pol. of zero-

Measure reflection phase difference on a zero-phase-shift mirror

Mirror	Reflectivity	CC mm
Front	99%	50
End	99%	50
Test	s-pol.: 99.99%, p-pol.: 99.97%	1000

- $\Delta \phi \leq 0.015 \, \deg$
 - Confirmed being able to achieve simultaneous resonance @ 1066.7 nm
 - Satisfied requirement for simultaneous resonance

② DANCE with zero-phase-shift mirror and ECDL

- 2. Suppress time fluctuation of reflection phase difference which needs to conduct long term axion dark matter search
- Satisfied requirement $\Delta\phi \leq 0.015~{
 m deg}$
- Investigating the cause of the fluctuation

Current status of DANCE with zero-phase-shift mirror and ECDL • Measured reflection phase difference with a bow-tie optical ring cavity • Able to achieve simultaneous resonance by tuning @ \sim 1066 nm \rightarrow Tune the wavelength precisely to achieve simultaneous resonance

- Current status of DANCE with zero-phase-shift mirror and ECDL • Achieved simultaneous resonance @ 1065.84(2) nm
- Satisfied the design value of finesse

Future plans for DANCE

- Investigating the cause of time fluctuation of reflection phase difference between s-pol. and ppol. with a folded cavity
 - Long term observation of DANCE with zero-phase-shift mirror and ECDL
- Introduce high power laser for DANCE (50 mW \rightarrow 1 W)

 \rightarrow Achieve target sensitivity

Summary

DANCE (Dark matter Axion search with riNg Cavity Experiment)

- Dark matter axion search with a bow-tie optical ring cavity by detecting a rotation angle of linearly polarized light
- Achieved simultaneous resonance with zero-phase-shift mirror and ECDL
- Aim to achieve the world's most sensitive dark matter axion search

