Visualizing high energy particles of extensive air showers with Subaru Hyper Supreme-Cam

HSC project 433, S. Kawanomoto et al., Scientific Reports 13:16091 (2023)

Toshihiro Fujii (OMU, NITEP) <u>toshi@omu.ac.jp</u> Fraser Bradfield, Ryuichi Kobo, Heungsu Shin (OMU) Satoshi Kawanomoto, Michitaro Koike, Satoshi Miyazaki (NAOJ) 2024 October 16th, Tohoku University Workshop on Cosmic Indicators of Dark Matter 2024

Hgh energy particles of extensive air showers

Relative time from earliest detector [µs]

Visualizing high energy particles of extensive air showers with ⁵ **Subaru Hyper Supreme-Cam**

Direct detection of Subaru HSC CCDs

Altitude 4139 m, Mauna Kea, Hawai **Optical and Infra-red telescope** 8.2 m diameter mirror 34' x 27' field of view

CCD size 30 mm x 60 mm

116 CCDs

Image credit: https://subarutelescope.org

App Store (Mac)

0.2 mm thickness 150 sec. exposure

Particle densities detected by Subaru HSC

· ·				
	-			

	a Maria Maria Arta Ar			
				*
한 성의 위험에는 이 바람 (gel). 1997년 - 1997년 - 19				
		, 영상 수 있는		
	· · · · · · · · · · · · · · · · · · ·		1999 - 1999 -	
800 at 180 at 18				
				4

Directional analysis of cosmic-ray shower particles

Result of directional analysis

Direction of particles (degree)

Subaru HSC data set and search result

Ş

Formulate the "background model" of single electromagnetic and/or muonic particles Ş

Visit	Date	UT	Filter	\u03ct _{tel}	\$\$\$	B _{sky}	N _{track}	N _{model}	N _{excess}	073808	Ν
034298	2015-07-14	09:17:32	HSC-g	54.2	138.9	413	24745	16685	8060		
034480	2015-07-14	13:28:20	HSC-g	72.7	1.4	423	28276	18760	9516		
034814	2015-07-15	14:47:34	HSC-r	64.7	45.5	1559	35124	19424	15700		
039340	2015-10-06	14:08:04	HSC-y	43.3	63.4	6209	36354	22328	14026		
069450	2016-04-15	10:55:54	HSC-y	55.5	54.3	7843	38513	24810	13703		
073808	2016-06-11	09:42:43	HSC-i2	59.0	57.1	2880	99476	25113	74363		
146672	2018-04-22	09:42:33	HSC-r2	63.2	50.7	2845	32509	18302	14207	E	
161642	2019-01-07	15:31:21	HSC-g	57.4	55.0	358	40683	17182	23500		90 60 30 0
162680	2019-01-11	05:20:15	HSC-z	66.0	37.0	1874	33089	23908	9181		
163754	2019-02-02	15:35:37	HSC-g	51.7	68.7	367	23441	16365	7076		telescope
190348	2019-11-01	10:00:11	HSC-g	60.7	61.1	418	26593	17657	8936		pointing
202364	2020-01-03	12:39:19	HSC-g	51.1	-67.2	396	24279	15839	8440		
203690	2020-01-20	14:27:54	HSC-r2	67.3	-48.5	1017	27180	18166	9014		
Tabla 2	Event info	rmation	f tha page		ovtopci	vooir	howard	dotocto	d by Su	haru USC	S

Table 5. Event mormation of the possible extensive air showers detected by Subaru mSC.

Subaru HSC data set between March 2014 and January 2020, total 875 hours exposure.

Select "significant" excess events with >20 σ compared to background fluctuation \rightarrow 13 events

Application for "Dark Matter" or new physics search

- Unprecedented detailed measurements for cosmic ray extensive air showers Ş
 - Ş Possibility on proton, He, Li, Be Fe identification by separating electrons and muons
 - Ş Understanding air-shower physics and hadron interaction models
- Search for dark matter signal in CCD of Subaru HSC? Ş
- **Potential on new physics search?** (Discussed with M. Yamanaka) Ş
 - $\mu^- \rightarrow e^- + e^+ + e^-$ Ş Search for Lepton flavor violating decay?

	μ DECF	AT MODES	Lepton Family number (IF) violating modes					
	μ^+ modes are charge conjugates of	the modes below.	Г ₄	$e^- u_e \overline{ u}_\mu$	LF	[c] < 1.2	%	
	Mode	Fraction (Γ_i/Γ)	Confidence level	Γ ₅ Γε	$e^- \gamma$ $e^- e^+ e^-$	LF LF	< 4.2 < 1.0	imes 10 ⁻¹³ $ imes$ 10 ⁻¹²
Г ₁ Га	$e^-\overline{\nu}_e\nu_\mu$	$\approx 100\%$		Γ ₇	$e^- 2\gamma$	LF	< 7.2	\times 10 \times 10 ⁻¹¹
Γ ₃	$e^{-}\overline{\nu}_{e}\nu_{\mu}e^{+}e^{-}$	[a] $(0.0\pm0.3)\times10^{-5}$ [b] $(3.4\pm0.4)\times10^{-5}$						DDC 1

PDG 2021

14

Dark Energy Survey (DES)

https://www.darkenergysurvey.org/

Square Kilometer Array (SKA)

- 230

- 215

"Inverse" multimessenger observations by astronomical telescopes <u>for cosmic</u> 1/cm² <u>rays</u>

- 8 g/cm² on X_{max}
- 3% in Energy

S. Buitink, PoS (ICRC2023) 503

Summary and future plans

- Supreme-Cam
- - Search for lepton flavor violating decay? $\mu^+ \rightarrow e^+ e^- e^+$
- Future plans and ideas
 - Further data analysis of Subaru HSC Being prepared for an installation of surface detector array Ö

Image credit: <u>https://subarutelescope.org</u>

Visualizing cosmic-ray extensive air showers with Subaru Hyper

Your insightful suggestions are highly welcome for possible application Search for exotic physics; Dark matter, WIMP, Monopole, Q-ball?

Data taking of dark images in daytime as a cosmic ray detector?

