

Isotropic cosmic birefringence from an oscillating axion-like field

Kai Murai Tohoku University

Based on arXiv:2407.14162

Workshop on Cosmic Indicators of Dark Matter 2024 @ Tohoku University Oct. 16, 2024

■ CMB polarization

CMB photons are linearly polarized due to Thomson scatterings.

Birefringence in CMB polarization

EB correlation from birefringence

Without parity-violating physics,

 $\langle E_l B_l \rangle = 0$

If the linear polarization rotates in propagation,

 $\langle E_l B_l \rangle \neq 0$

[Lue, Wang, Kamionkowski (1999)]

If all photons have the same rotation angle *β*,

 $\tilde{B}_l = E_l \sin(2\beta) + B_l \cos(2\beta)$

after birefringence

$$
\tilde{C}_l^{EB} \simeq \tan(2\beta)\tilde{C}_l^{EE}
$$

 $\left(\text{assuming } C_l^{EB} = 0, C_l^{EE} \gg C_l^{BB}\right)$

Measurement of cosmic birefringence

Planck (and WMAP) data suggest the rotation angle *β* at 68% C.L.:

 β is \int isotropic.
consistent with no frequency dependence. [Eskilt (2022)]

Note: In this talk, we do not consider the $n\pi$ ambiguity of β . [Naokawa et al. (2024)]

New physics violating parity?

■ Axion-like particle (ALP)

A pseudoscalar field $\boldsymbol{\phi}$ arising from a SSB of a global U(1) symmetry Chern-Simons coupling with the SM gauge fields: $\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$, ... Wide range of mass and coupling (cf. string axiverse) [Arvanitaki *et al*. (2010)]

cf.) QCD axion: A possible solution to the strong CP problem. "Decay constant" controls its mass and couplings.

These can be ultra-light dark matter.

■ Origin of cosmic birefringence

$$
\beta = 0.342^{\circ} {}^{+0.094^{\circ}}_{-0.091^{\circ}} \text{ at 68\% C.L.} :
$$

Isotropic Independent of photon freq.

Axion/ALP can explain β via its coupling to photons:

$$
\mathcal{L} \supset -\frac{g}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \text{[Carroll (1998)]}
$$

2

d*η*

Different dispersion relation for circular polarizations

$$
k_{\pm} = \omega \pm \frac{g}{2} \frac{d}{d\eta} \phi(\eta, \overrightarrow{x}(\eta)) \rightarrow
$$

$$
\mathcal{A} = \frac{1}{2} \int d\eta \frac{d\phi}{d\eta} = \frac{1}{2} (\phi_{obs} - \phi_{emit})
$$
\n(2) Find the original point θ and θ is a constant.

[Carroll, Field, Jackiw (1990)]

$$
\beta = \frac{g}{2}(\phi_{\text{obs}} - \phi_{\text{emit}})
$$

Time evolution of the axion field

To explain $\beta \thicksim 0.3^\circ$, the axion field needs to evolve after the recombination.

• $m \lesssim 10^{-31}$ eV: Oscillation after reionization Uniform β . We obtain $C_l^{EB} \propto C_l^{EE}$ for all l .

[Nakatsuka, Namikawa, Komatsu (2022)]

$$
\beta = \frac{g}{2}(\phi_{\text{obs}} - \phi_{\text{emit}})
$$

Time evolution of the axion field

To explain $\beta \thicksim 0.3^\circ$, the axion field needs to evolve after the recombination.

• $m \gtrsim 10^{-31}$ eV: Oscillation before reionization $C_l^{EB} \propto C_l^{EE}$ except for the reionization bump

[Nakatsuka, Namikawa, Komatsu (2022)]

Birefringence by ALP

 $\beta =$ *g* 2 $(\phi_{\rm obs} - \phi_{\rm emit})$

Time evolution of the axion field

To explain $\beta \thicksim 0.3^\circ$, the axion field needs to evolve after the recombination.

• $m \gtrsim 10^{-28}$ eV: Oscillation before recombination Oscillating β depending on the last scattering time Negligible C_l^{EB} and reduced C_l^{EE}

Axion oscillation during the recombination

Washout effect: [Fedderke, Graham, Rajendran (2019)]

Axion oscillation in the recombination \rightarrow Oscillation of the polarization plane After averaging, (parity violation) ~ 0 and reduction of linear polarization

$$
\frac{1}{2}(\bigotimes + \bigotimes) = \bigotimes
$$

Axion with $m \gtrsim 10^{-28}$ eV CANNOT explain $\beta \sim 0.3^{\circ}$.

The washout effect is limited from the observations:

$$
C_{l,wo}^{EE} \simeq j_0^2 (g \langle \phi \rangle_*) C_{l,0}^{EE} \qquad \frac{1}{T} \int_0^T dt \cos \left[g \langle \phi \rangle_* \sin \left(\frac{2\pi t}{T} \right) \right] = J_0(g \bar{\phi}_*)
$$

 $\gtrsim 0.99$

Justify this formula via numerical simulations

Possibility of $\beta \sim 0.3^{\circ}$ from an axion oscillating before the recombination?

Numerical result for washout effect

Extend the public code CLASS to include the birefringence. Tune to include rapid oscillation of the axion. [Nakatsuka, Namikawa, Komatsu (2022)]

$$
C_{l,\text{num}}^{EB} \simeq C_{l,\text{approx}}^{EB} \text{ at } \sim 10\,\%
$$

The time-evolving $\boldsymbol{\phi}$ amplitude modifies the shape of C_l^{EE} , though it is negligibly small.

[KM (2024)]

Birefringence by asymmetric oscillations

Asymmetric potential

A toy-model potential asymmetric for $\phi \leftrightarrow -\phi$

$$
V(\varphi) = \frac{m_{\phi}^2 \phi_{\text{in}}^2}{2} \left(\varphi^2 + c_3 \varphi^3 + c_4 \varphi^4 \right) \left(\varphi \equiv \frac{\phi}{\phi_{\text{in}}} \right)
$$

cf.) superposition of cos-type potentials

900 950 1000 1050 1100 1150 1200

Redshift, *z*

 0.002 $\frac{11}{900}$

ϕ /

*ϕ*in

When the cubic term is relevant, the axion oscillation becomes asymmetric.

Incomplete cancelation of parity violation Non-negligible EB spectrum

[KM (2024)]

Birefringence by asymmetric oscillations

EB spectrum from asymmetric oscillations

From the average of ϕ in the recombination epoch ($\equiv \bar{\phi}_{*}$) , we can estimate the EB spectrum:

$$
C_{l,\text{approx}}^{EB} \simeq \frac{1}{2} C_{l,0}^{EE} \sin(2g\bar{\phi}_*)
$$

Numerical result for C_l^{EB} :

$$
C_{l,\text{num}}^{EB} \simeq C_{l,\text{approx}}^{EB} \text{ at } \lesssim 25\,\%
$$

We can obtain C_l^{EB} for $\beta \sim 0.3^\circ$ without limited by the washout.

No reionization bump in C_l^{EB}

■ Isotropic birefringence by dark matter

We found that the asymmetrically oscillating birefringence can induce C_l^{EB} corresponding to $\beta \sim 0.3$ ° while consistent with the washout limit for C_l^{EE} .

This result opens up the possibility of isotropic birefringence from ALP DM. However, there remains some problems to solve…

• Simulation for *m* ≫ 10−²⁶ eV

Due to high numerical costs, we need improve our code. However, we expect that C_l^{EB} hardly depend on m as far as $m \gg 10^{-28}$ eV.

• Consistent expansion history including the ALP

When the cubic and quartic terms are relevant, the equation-of-state parameter of the axion, $w_{\bm{\phi}}$, deviates from zero. We need consistently test the ALP scenario.

Summary

- Isotropic $\beta \sim 0.3^{\circ}$ from the CMB polarization data
- Axion can explain this signal.
- If the axion starts to oscillate before the recombination epoch,
	- EB spectrum is negligibly small.
	- EE spectrum is reduced due to the washout effect. {

- Validated the formula for the washout effect via numerical simulations.
- With an asymmetric potential for the axion, we can reproduce C_l^{EB} for $\beta \sim 0.3^\circ$ with safely small washout.
- We expect a similar result even for $m \gtrsim 10^{-22} \, \text{eV}$.
- Open the possibility of isotropic birefringence by dark matter?