

Isotropic cosmic birefringence from an oscillating axion-like field

Kai Murai Tohoku University

Based on arXiv:2407.14162

Workshop on Cosmic Indicators of Dark Matter 2024 @ Tohoku University Oct. 16, 2024

CMB polarization

CMB photons are linearly polarized due to Thomson scatterings.

Birefringence in CMB polarization

EB correlation from birefringence

Without parity-violating physics,

 $\langle E_l B_l \rangle = 0$

If the linear polarization rotates in propagation,

 $\langle E_l B_l \rangle \neq 0$

[Lue, Wang, Kamionkowski (1999)]

If all photons have the same rotation angle β ,

 $\tilde{E}_l = E_l \cos(2\beta) - B_l \sin(2\beta)$ $\tilde{B}_l = E_l \sin(2\beta) + B_l \cos(2\beta)$

after birefringence

$$\tilde{C}_l^{EB} \simeq \tan(2\beta)\tilde{C}_l^{EE}$$

(assuming $C_l^{EB}=0$, $C_l^{EE}\gg C_l^{BB}$)

Measurement of cosmic birefringence

Planck (and WMAP) data suggest the rotation angle eta at 68% C.L.:

 β is $\begin{cases} \text{isotropic.} \\ \text{consistent with no frequency dependence. [Eskilt (2022)]} \end{cases}$

Note: In this talk, we do not consider the $n\pi$ ambiguity of β . [Naokawa et al. (2024)]

New physics violating parity?

Axion-like particle (ALP)

A pseudoscalar field ϕ arising from a SSB of a global U(1) symmetry Chern-Simons coupling with the SM gauge fields: $\phi F_{\mu\nu} \tilde{F}^{\mu\nu}$, ... Wide range of mass and coupling (cf. string axiverse) [Arvanitaki *et al.* (2010)]

cf.) QCD axion: A possible solution to the strong CP problem. "Decay constant" controls its mass and couplings.

Origin of cosmic birefringence

$$\beta = 0.342^{\circ\,+0.094^{\circ}}_{-0.091^{\circ}}~$$
 at 68% C.L.

Isotropic Independent of photon freq.

Axion/ALP can explain β via its coupling to photons:

$$\mathscr{L} \supset -\frac{g}{4}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$$
 [Carroll (1998)]

Different dispersion relation for circular polarizations

$$k_{\pm} = \omega \pm \frac{g}{2} \frac{\mathrm{d}}{\mathrm{d}\eta} \phi(\eta, \vec{x}(\eta)) \rightarrow$$

[Carroll, Field, Jackiw (1990)]

$$\beta = \frac{g}{2}(\phi_{\rm obs} - \phi_{\rm emit})$$

Time evolution of the axion field

To explain $\beta \sim 0.3^{\circ}$, the axion field needs to evolve after the recombination.

• $m \lesssim 10^{-31} \,\mathrm{eV}$: Oscillation after reionization Uniform β . We obtain $C_l^{EB} \propto C_l^{EE}$ for all l.

[Nakatsuka, Namikawa, Komatsu (2022)]

$$\beta = \frac{g}{2}(\phi_{\rm obs} - \phi_{\rm emit})$$

Time evolution of the axion field

To explain $\beta \sim 0.3^{\circ}$, the axion field needs to evolve after the recombination.

• $m \gtrsim 10^{-31} \, {\rm eV}$: Oscillation before reionization $C_l^{EB} \propto C_l^{EE}$ except for the reionization bump

[Nakatsuka, Namikawa, Komatsu (2022)]

 $\beta = \frac{g}{2}(\phi_{\rm obs} - \phi_{\rm emit})$

Time evolution of the axion field

To explain $\beta \sim 0.3^{\circ}$, the axion field needs to evolve after the recombination.

• $m \gtrsim 10^{-28} \,\mathrm{eV}$: Oscillation before recombination Oscillating β depending on the last scattering time Negligible C_l^{EB} and reduced C_l^{EE}

Axion oscillation during the recombination

Washout effect: [Fedderke, Graham, Rajendran (2019)]

Axion oscillation in the recombination \rightarrow Oscillation of the polarization plane After averaging, (parity violation) ~ 0 and reduction of linear polarization

Axion with $m \gtrsim 10^{-28} \, {\rm eV}$ CANNOT explain $\beta \sim 0.3^{\circ}$.

The washout effect is limited from the observations:

$$C_{l,\text{wo}}^{EE} \simeq \frac{j_0^2 (g\langle \phi \rangle_*) C_{l,0}^{EE}}{\gtrsim 0.99} \qquad \frac{1}{T} \int_0^T dt \cos \left[g\langle \phi \rangle_* \sin \left(\frac{2\pi t}{T} \right) \right] = J_0 (g\bar{\phi}_*)$$

Justify this formula via numerical simulations

Possibility of $\beta \sim 0.3^{\circ}$ from an axion oscillating before the recombination?

Numerical result for washout effect

Extend the public code CLASS to include the birefringence. Tune to include rapid oscillation of the axion. [Nakatsuka, Namikawa, Komatsu (2022)]

$$C_{l,\mathrm{num}}^{EB}\simeq C_{l,\mathrm{approx}}^{EB}$$
 at $\sim 10\,\%$

The time-evolving ϕ amplitude modifies the shape of C_l^{EE} , though it is negligibly small.

[KM (2024)]

Birefringence by asymmetric oscillations

Asymmetric potential

A toy-model potential asymmetric for $\phi \leftrightarrow - \phi$

$$V(\varphi) = \frac{m_{\phi}^2 \phi_{\text{in}}^2}{2} \left(\varphi^2 + c_3 \varphi^3 + c_4 \varphi^4 \right) \quad \left(\varphi \equiv \frac{\phi}{\phi_{\text{in}}} \right)$$

the axion oscillation becomes asymmetric.

Incomplete cancelation of parity violation

cf.) superposition of cos-type potentials

When the cubic term is relevant,

Non-negligible EB spectrum

Redshift, z

[KM (2024)]

Birefringence by asymmetric oscillations

EB spectrum from asymmetric oscillations

From the average of ϕ in the recombination epoch ($\equiv \bar{\phi}_*)$, we can estimate the EB spectrum:

$$C_{l,\text{approx}}^{EB} \simeq \frac{1}{2} C_{l,0}^{EE} \sin(2g\bar{\phi}_*)$$

Numerical result for C_l^{EB} :

$$C_{l,\mathrm{num}}^{EB}\simeq C_{l,\mathrm{approx}}^{EB}$$
 at $\lesssim 25~\%$

We can obtain C_l^{EB} for $\beta \sim 0.3^\circ$ without limited by the washout.

No reionization bump in C_l^{EB}

Isotropic birefringence by dark matter

We found that the asymmetrically oscillating birefringence can induce C_l^{EB} corresponding to $\beta \sim 0.3^\circ$ while consistent with the washout limit for C_l^{EE} .

This result opens up the possibility of isotropic birefringence from ALP DM. However, there remains some problems to solve...

• Simulation for $m \gg 10^{-26} \, {\rm eV}$

Due to high numerical costs, we need improve our code. However, we expect that C_l^{EB} hardly depend on *m* as far as $m \gg 10^{-28} \,\mathrm{eV}$.

Consistent expansion history including the ALP

When the cubic and quartic terms are relevant, the equation-of-state parameter of the axion, w_{ϕ} , deviates from zero. We need consistently test the ALP scenario.

Summary

- Isotropic $\beta \sim 0.3^{\circ}$ from the CMB polarization data
- Axion can explain this signal.
- If the axion starts to oscillate before the recombination epoch,

 - EB spectrum is negligibly small. EE spectrum is reduced due to the washout effect.

- Validated the formula for the washout effect via numerical simulations.
- With an asymmetric potential for the axion, we can reproduce C_1^{EB} for $\beta \sim 0.3^\circ$ with safely small washout.

- We expect a similar result even for $m \gtrsim 10^{-22} \, {\rm eV}$.
- Open the possibility of isotropic birefringence by dark matter?