Thermal productions of axion in DFSZ-type axion models

Kodai Sakurai (Tohoku U.)

In collaboration with

Fuminobu Takahashi (Tohoku U.)

[To be appeared in arXiv soon]

Workshop on Cosmic Indicators of Dark Matter 2024, Oct. 16th, 2024

- Dark matter (DM) is one of the unsolved problems in the SM.
- Dark matter may be light and feeble interactions.
 - promising candidate: axions
- Axions can solve DM and strong CP problems.
- The nature of the axion is unknown.
 - Mass scale, interactions
 - Production mechanisms

In this talk, we will discuss axion production from heavy Higgs bosons.

Kodai Sakurai

Axion productions in early Universe

Non-thermal productions (Misalignment mechanism)

- Axion acquires potential due to the explicit U(1).
- It starts to oscillate when $m_a \gtrsim H$.

- The aboudance:
$$\Omega_a h^2 \sim 0.12 \left(\frac{\theta_i}{2}\right)^2 \left(\frac{m_a}{3.5 \text{keV}}\right)^{1/2} \left(\frac{f_a}{2 \times 10^{10} \text{GeV}}\right)^2$$

Thermal productions of axion in DFSZ-type axion models

Kodai Sakurai

Axion productions in early Universe

Non-thermal productions (Misalignment mechanism)

- Axion acquires potential due to the explicit $\mathcal{U}(1)$.
- It starts to oscillate when $m_a \gtrsim H$.

- The aboudance:
$$\Omega_a h^2 \sim 0.12 \left(\frac{\theta_i}{2}\right)^2 \left(\frac{m_a}{3.5 \text{keV}}\right)^{1/2} \left(\frac{f_a}{2 \times 10^{10} \text{GeV}}\right)^2$$

Thermal productions

- Axion is thermalized (i.e., small f_a).
 - It is in thermal equilibrium.
 - It decouples from thermal plasma at a certain temperature.
- Axion is not thermalized (i.e., large f_a). \rightarrow Freeze-in mechanism

Freeze-in mechansim

et. al., JHEP 03 (2010)080]]

<u>Assumptions</u>

- Axion couple with bath particles in thermal plasma.
- It never reaches thermal equilibrium.

<u>Features</u>

- Axion is produced from the thermal plasma.
- The energy density increases as temperature decreases.
- The production of axion stops at $T \sim m_a$.

Concrete axion models

KSVZ-type model [Original model: J. E. Kim (1979); M. A. Shifman, A. I. Vainshtein, V. I. Zakharov (1980)]

 $\mathscr{L}_{\mathrm{KSVZ}} \ni y_Q \bar{Q}_L Q_R S + \mathrm{h.c.}$

Q:extra vector like singlet fermions
S:extra singlet scalar:
$$S = \frac{1}{\sqrt{2}}(v_s + \rho) \exp(ia/v_s)$$

- Extra fields (Q, S) are U(1) charged.
- Axion mainly couples with gluon. No Axion-fermion coupling at the tree-level.

DFSZ-type model [Original model: A. R. Zhitnitsky (1980); M. Dine, W. Fischler, M. Srednicki (1981)]

 $\mathscr{L}_{\mathrm{DFSZ}} \ni \kappa H_1^{\dagger} H_2 S^2 + y_u \bar{Q} H_2^c u_R + y_d \bar{Q} H_1 d_R + \mathrm{h.c.} \qquad H_1 : \mathrm{SM} \text{ Higgs doublet} \\ H_2 : \mathrm{extra} \text{ Higgs doublet} \ni H, A, H^{\pm} \\ S: \mathrm{extra} \text{ singlet scalar}$

- Axion couple with Higgs bosons
- Axion-gluon couplings are realized by SM-fermions

Thermal productions in KSVZ/DSFZ type models

- For DFSZ type-model, axion is mainly produced from Higgs in sym. phase.
- Renormalizable int. generates IR dominant contributions for *a* production.
 - \rightarrow Axion production from heavy Higgs is important.

Thermal productions in KSVZ/DSFZ type models

- For DFSZ type-model, axion is mainly produced from Higgs in sym. phase.
- Renormalizable int. generates IR dominant contributions for *a* production.
 - \rightarrow Axion production from heavy Higgs is important.

Thermal productions in KSVZ/DSFZ type models

- For DFSZ type-model, axion is mainly produced from Higgs in sym. phase.
- Renormalizable int. generates IR dominant contributions for *a* production.
 - \rightarrow Axion production from heavy Higgs is important.

Thermal productions from heavy Higgs: set up

<u>Assumptions</u>

• $m_H > v_{EW}$ \longrightarrow Axion productions in symmetric phase

<u>Production processes</u> $(H_1, H_2) = (h, A), (G^0, H), (G^{\pm}, H^{\pm})$

Thermal productions of axion in DFSZ-type axion models

Heavy Higgs decays vs scatterings

- $\sigma_{H_2V \to aH_1}, \sigma_{H_2H_1 \to aV} \gtrsim \sigma_{H_2f \to af}$ because $H_2H_1 \to Va$ and $H_2V \to H_1a$ involve 16 channels.
- $\sigma_{H_2V \to aH_1} \gtrsim \sigma_{H_2H_1 \to aV}$ because $H_2V \to H_1a$ is enhanced at $T \sim m_H$ via threshold effect.
- Heavy Higgs boson decays are the main channels for the axion productions.

Cosmological bounds for the keV scale axion

 $1 \text{keV} \lesssim m_a \lesssim 0.1 \text{GeV}$

- Deacying axion is constrained by the X-ray and CMB, etc.
- The two bound constrains $g_{a\gamma}$ and R_a .

(X-ray): $R_a \leq 10^{-12}$

(CMB): $R_a \lesssim 10^{-14}$

• More heaviear mass of extra Higgs make the bound strong.

 $R_a = \frac{\rho_a^{\tau_a \to \infty}}{2}$ Type–II, $s_{\beta-\alpha}=1$, $t_{\beta}=5$, $m_H = \tilde{m}_{12} = 600 \text{ GeV}$ $\rho_{\rm DM.0}$ S.B.A.F $\log_{10} R_a = 1$ 10⁻¹¹ $|g_{a \gamma}|$ [GeV⁻¹ 10-1 10⁻¹⁷ 10⁴ 100 1000 10⁵ 10 1

[KS, F. Takahashi, Preliminary]

 m_a [keV]

 \rightarrow If axion is produced from heavy Higgs boson, comosorogical bounds depends on the properties of the heavy Higgs bosons.

Cosmological bounds for the keV scale axion

 $\rho_{\rm DM.0}$

 $1 \text{keV} \lesssim m_a \lesssim 0.1 \text{GeV}$

- Deacying axion is constrained by the X-ray and CMB, etc.
- The two bound constrains $g_{a\gamma}$ and R_a .

(X-ray): $R_a \leq 10^{-12}$

(CMB): $R_a \lesssim 10^{-14}$

• More heaviear mass of extra Higgs make the bound strong.

 \rightarrow If axion is produced from heavy Higgs boson, comosorogical bounds depends on the properties of the heavy Higgs bosons.

Summary

- Production mechanisms between KSVZ model and DFSZ model are different.
- We have discussed axion thermal productions from the heavy Higgs bosons in DFSZ type axioin models.
- Larger mass of heavy Higgs increase the axion energy density. Various cosmorogical bounds(Xray, CMB, etc.) are severe.