

Axion and ALP Dark Matter Measuring its Abundance and More

J. Jaeckel

P. Arias^c, M. Cicoli^B, V. Dandoy^{kk}, B. Doebrich^{yy}, S. Hoof^P A. Hebecker^{*}, S. Knirck^{ff}, G. Lucente^{*}, V. Montoya^{*}, J. Redondo[×], A. Ringwald^{**}, C., Quint^{*}, M. Wittner^{*}, The FUNK Collaboration

Heidelberg University, ^cUniversidad de Santiago de Chile, [×]U. Zaragoza, ^BBologna U.,**DESY, ^TIPPP Durham, ^{kk}Brussels University, ^{YY}MPI Muenchen+CERN, ^{ff}Fermilab, ^pUniversity of Padua

Axion and ALP Dark Matter Measuring its Abundance and More

J. Jaeckel

P. Arias^c, M. Cicoli^B, V. Dandoy^{kk}, B. Doebrich^{yy}, S. Hoof^P A. Hebecker^{*}, S. Knirck^{ff}, G. Lucente^{*}, V. Montoya^{*}, J. Redondo[×], A. Ringwald^{**}, C., Quint^{*}, M. Wittner^{*}, The FUNK Collaboration

Heidelberg University, ^cUniversidad de Santiago de Chile, ^xU. Zaragoza, ^BBologna U., **DESY, [']IPPP Durham, ^{kk}Brussels University, ^{yy}MPI Muenchen+CERN, ^{ff}Fermilab, ^pUniversity of Padua

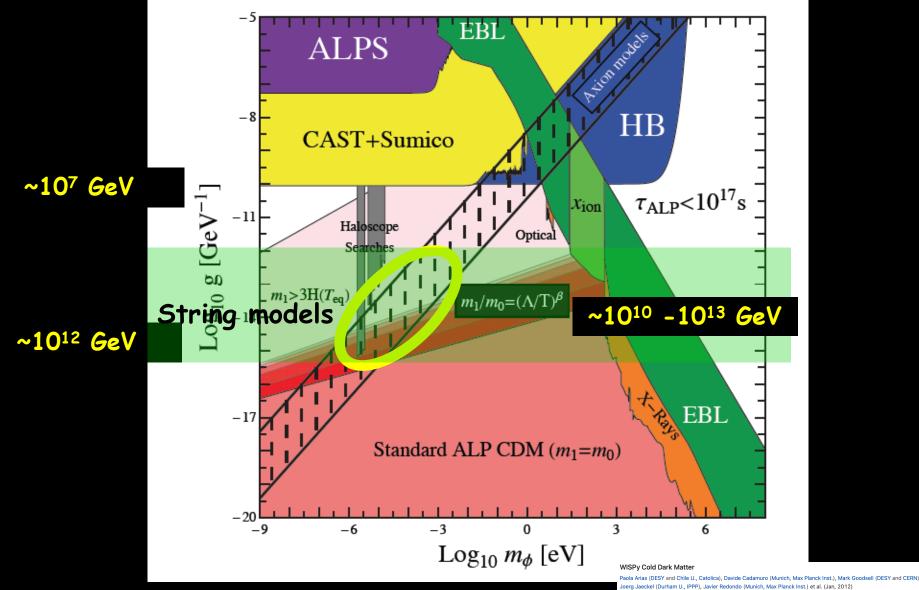
The Axion and its ALPs

Axions are the Best DM candidate ;-)

Heidelberg University

- Axions are motivated by SM problem
- Axions are dark and cold matter
- Axions are produced in the early Universe
- Axion's scale makes sense
- Axions are testable in reasonable experiments
- \cdot Axions can tell us a lot about astro and cosmo \checkmark

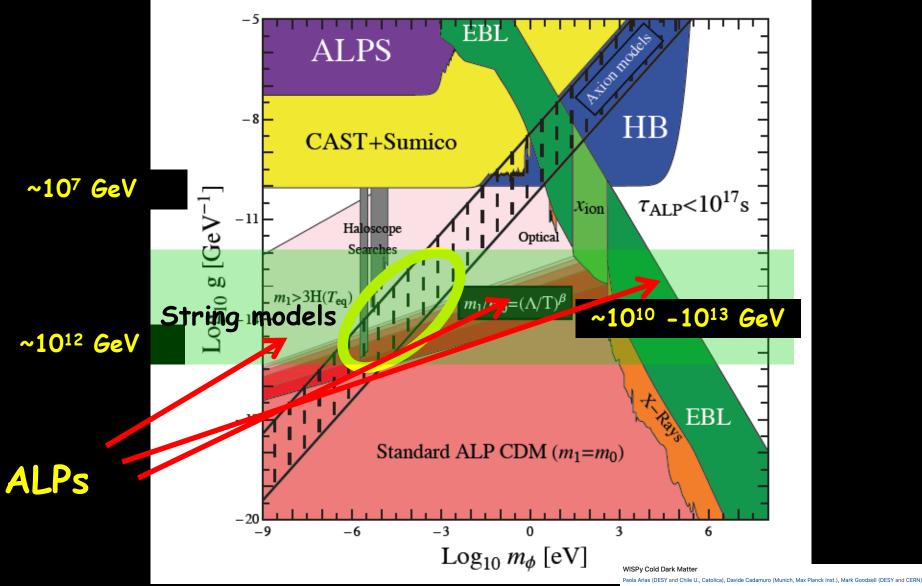
Axions are the Best DM candidate ;-)


INSTITUT FÜR

Heidelberg University

- Axions are motivated by SM problem
- Axions are dark and cold matter
- \cdot Axions are produced in the early Universe \vee
- Axion's scale makes sense
- Axions are testable in reasonable experiments

Axions can tell us a lot about astro and cosmo 🗸


Axion(-like particle) Dark Matter

Published in: JCAP 06 (2012) 013 • e-Print: 1201.5902 [hep-ph]

Axion(-like particle) Dark Matter

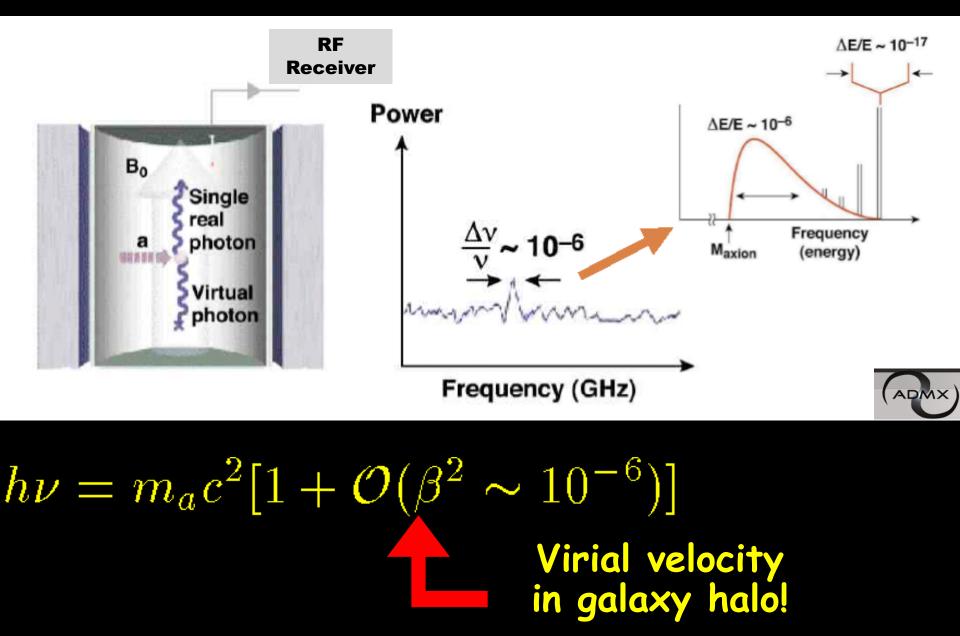
INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Paola Arias (DESY and Chile U., Catolica), Davide Cadamuro (Munich, Max Planck Inst.), Mark Goodsell (DESY and CERN Joerg Jaeckel (Durham U., IPPP), Javier Redondo (Munich, Max Planck Inst.) et al. (Jan, 2012) Published in: JCAP 06 (2012) 013 - e-Print: 1201.5902 (hep-ph)

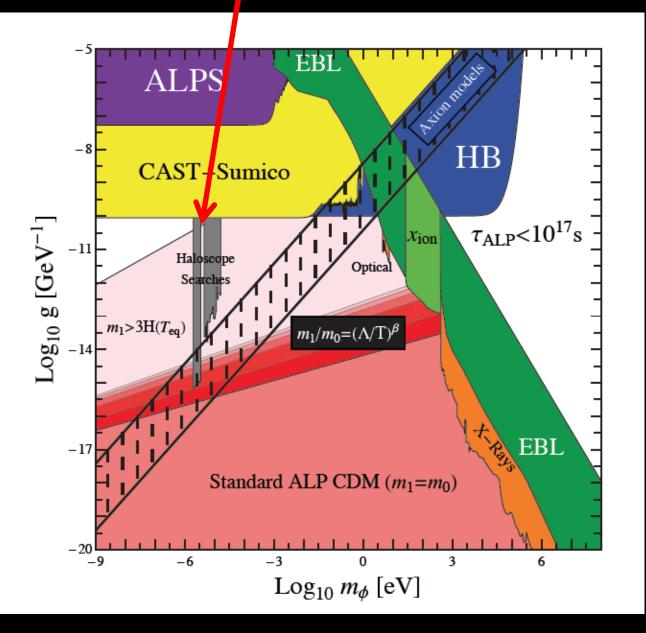
Detecting Axion/ALP DM

Use a plentiful source of axions

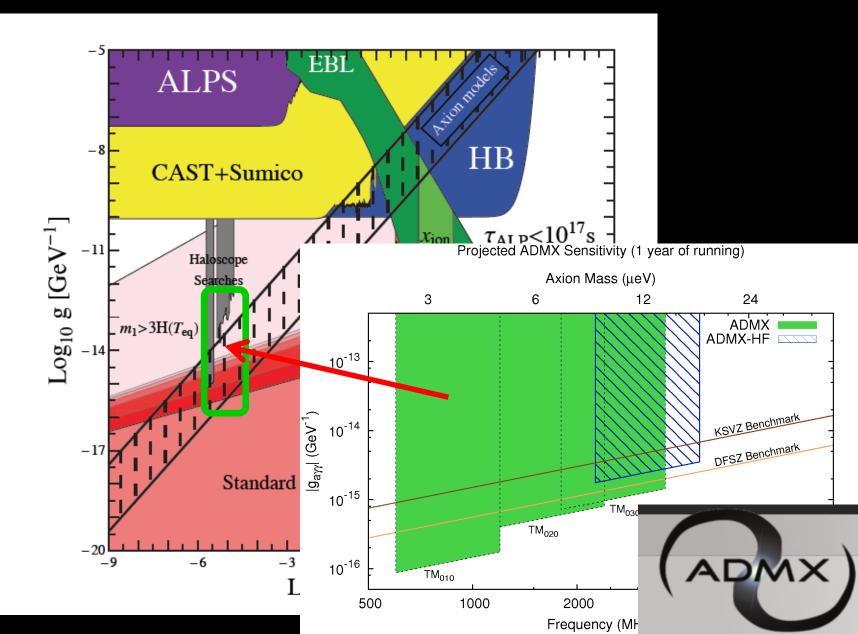
INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University


Photon Regeneration

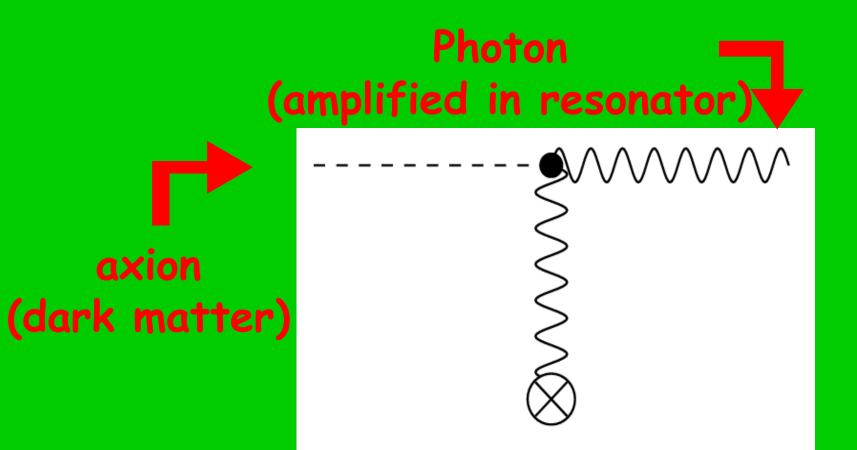
Photon (amplified in resonator)


 \sim

axion (dark matter)


Signal: Total energy of axion

An extremely sensitive probe!!!

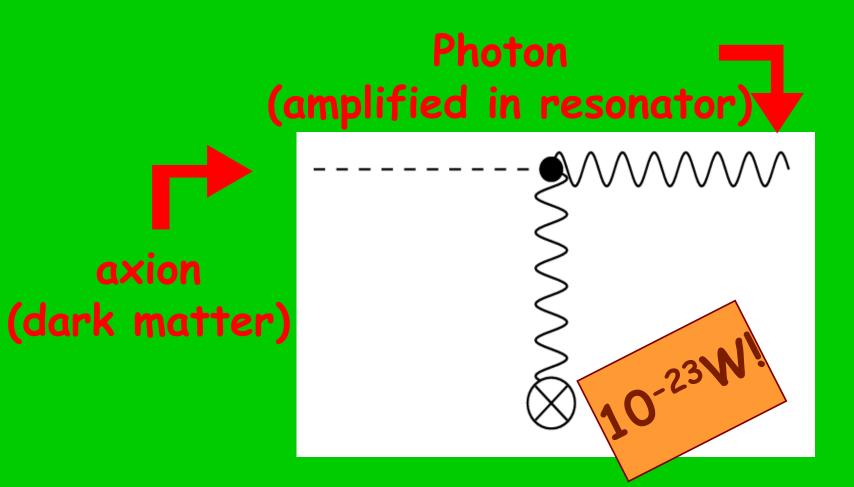

A discovery possible any minute!

Electricity from Dark Matter ;-).

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Photon Regeneration

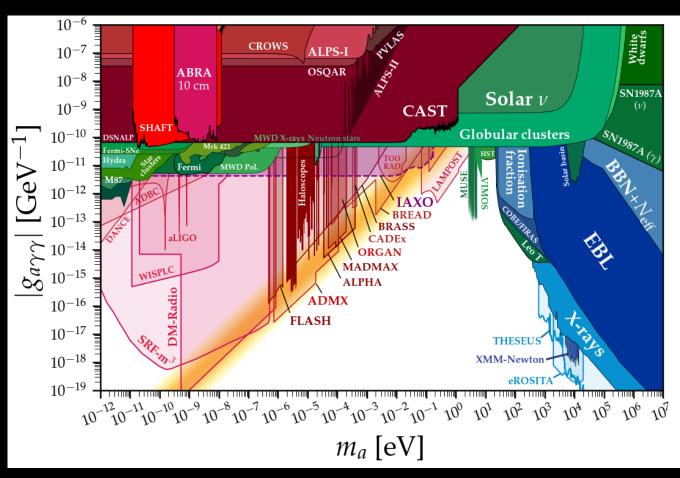
Really sustainable Energy



- Galaxy contains (6-30)×10¹¹ solar masses of DM
- → (3-15)×10⁴³ TWh
 @100000 TWh per year (total world today)
 → 10³⁸ years ☺
- DM power
 - ρ*v~300 MeV/cm^{3*}300km/s~10 W/m²
 - compared to 2W/m² for wind

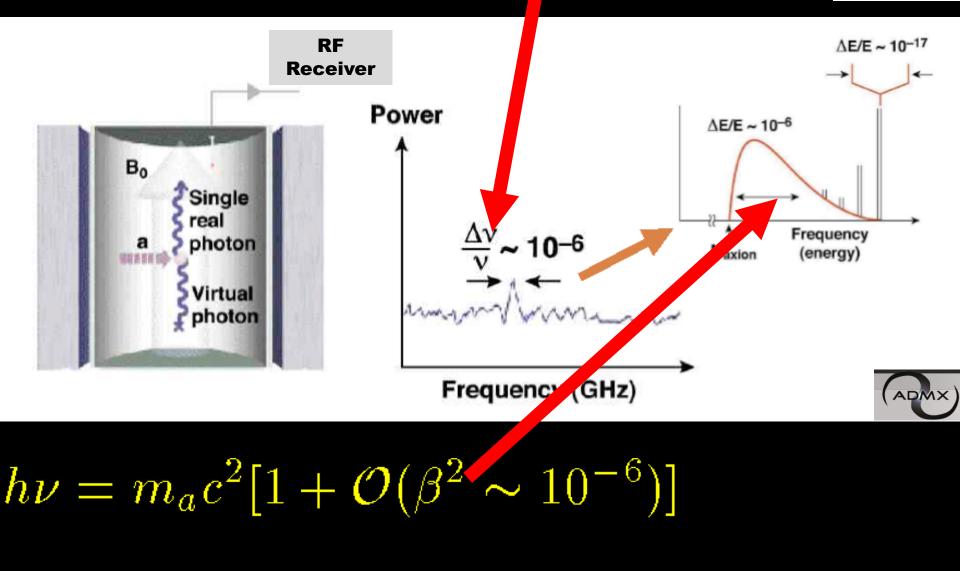
Electricity from Dark Matter ;-).

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University


Photon Regeneration

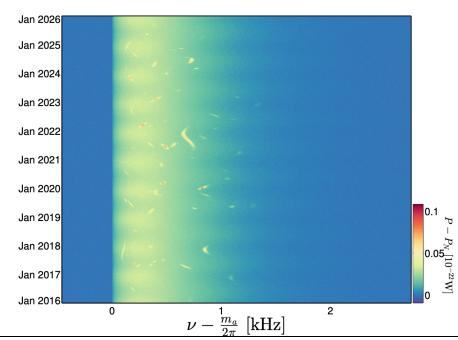
Many more experiments...

THEORETISCHE PHYSIK Heidelberg University

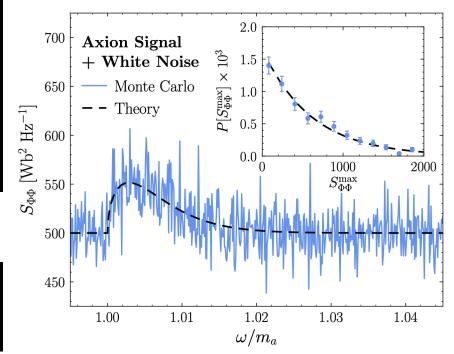

- Abracadabra
- · BRASS
- Bread
- Cultask
- DMRadio
- · EDM ring
- Haystac
- Lamppost
- Organ
- SRFcavities
- TooRad
- Quax

Plot from super-useful website by Ciaran O'Hare https://cajohare.github.io/AxionLimits/

DM Astrophysics


Signal: High resolution possible

Axion Astronomy...



Streams and local objects...

Axion astronomy with microwave cavity experiments Ciaran A. J. O'Hare (Nottingham U.), Anne M. Green (Nottingham U.) (Jan 11, 2017) Published in: *Phys.Rev.D* 95 (2017) 6, 063017 • e-Print: 1701.03118 [astro-ph.CO]

The Axion DM distribution...

Revealing the Dark Matter Halo with Axion Direct Detection

Joshua W. Foster (Michigan U., MCTP), Nicholas L. Rodd (MIT, Cambridge, CTP), Benjamin R. Safdi (Michigan U., MCTP) (Nov 28, 2017)

Published in: Phys.Rev.D 97 (2018) 12, 123006 • e-Print: 1711.10489 [astro-ph.CO]

Axion interferometry

#2

Networks of multiple detectors can give directional sensitivity

Dark Matter Interferometry

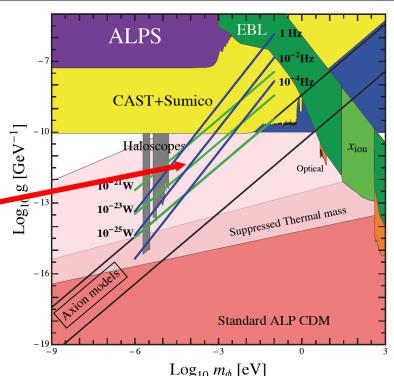
Joshua W. Foster (Michigan U., LCTP and UC, Berkeley and LBL, Berkeley), Yonatan Kahn (Illinois U., Urbana), Rachel Nguyen (Illinois U., Urbana), Nicholas L. Rodd (UC, Berkeley and LBL, Berkeley), Benjamin R. Safdi (Michigan U., LCTP and UC, Berkeley and LBL, Berkeley) (Sep 29, 2020)

Published in: Phys.Rev.D 103 (2021) 7, 076018 • e-Print: 2009.14201 [hep-ph]

 But even suitably shaped cavities can already give some sensitivity to that

Direct detection of dark matter axions with directional sensitivity

Igor G. Irastorza (Zaragoza U.), Juan A. Garcia (Zaragoza U.) (Jul, 2012)


Published in: JCAP 10 (2012) 022 · e-Print: 1207.6129 [physics.ins-det]

Dark Matter Antenna

Antenna converts axion->photon

-Radiation concentrated in center

Detector

Probes here; very sensitive!!

Searching for WISPy Cold Dark Matter with a Dish Antenna

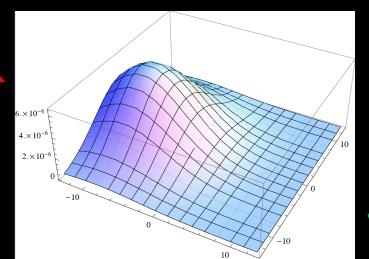
Dieter Horns (Hamburg U.), Joerg Jaeckel (Durham U., IPPP and Heidelberg U.), Axel Lindner (DESY), Andrei Lobanov (Bonn, Max Planck Inst., Radioastron.), Javier Redondo (Munich U., ASC and Munich, Max Planck Inst.) et al. (Dec, 2012) Published in: *JCAP* 04 (2013) 016 • e-Print: 1212.2970 [hep-ph]

The FUNK Experiment Recycle Auger mirror

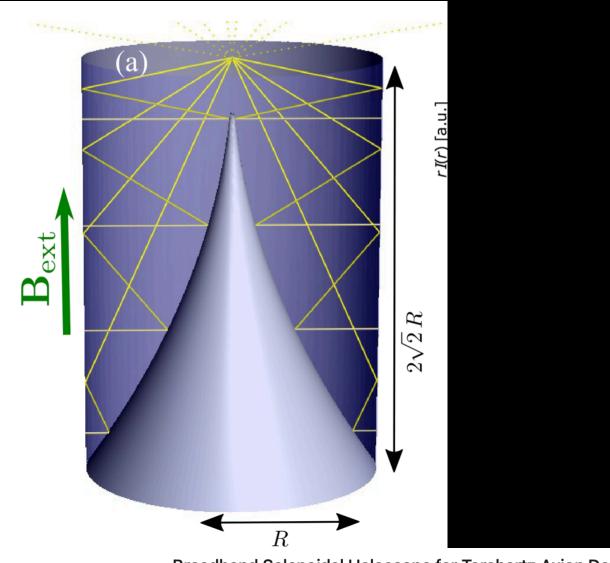
No magnet: Only sensitive to hidden photons

Taking a picture of the DM velocity

Emission from moving dark matter

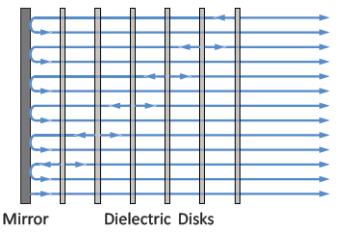

An antenna for directional detection of WISPy dark matter Joerg Jaeckel (Heidelberg U.), Javier Hedondo (Munich U., ASC and Munich, Max Planck Inst.) (Jul 26, 2013) Published In: JCAP 11 (2013) 016 - e-Print: 1307.7181 [hep-ph] Directional Resolution of Dish Antenna Experiments to Search for WISPy Dark Matter Joerg Jaeck (Heidelberg U.) Stefan Knick (Heidelberg U.) (Sen 1, 2015)

Published in: JCAP 01 (2016) 005 • e-Print: 1509.00371 [hep-ph]


A picture of the DM-velocity distribution

Screen

Can also use cool geometries: BREAD



Broadband Solenoidal Haloscope for Terahertz Axion Detection BREAD Collaboration • Jesse Liu (Cambridge U. and Chicago U.) et al. (Nov 23, 2021) Published in: *Phys.Rev.Lett.* 128 (2022) 13, 131801 • e-Print: 2111.12103 [physics.ins-det]

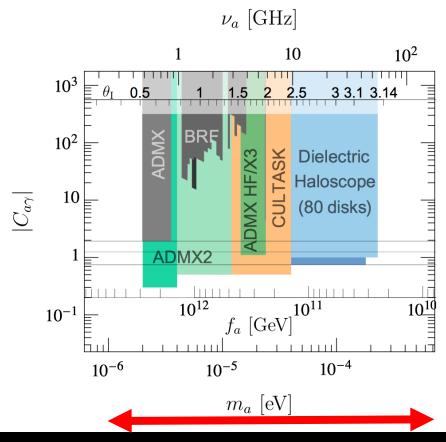
Going Mad(Max)

Ambitious new project at MPP

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Ве

Receiver

#22


Dielectric Haloscopes: A New Way to Detect Axion Dark Matter

The MADMAX Working Group: Allen Caldwell, Gia Dvali, Bela Majorovits, Alexander Millar, Georg Raffelt, Javier Redondo, Olaf Reimann, Frank Simon, Frank Steffen

Directional axion detection

Stefan Knirck (Munich, Max Planck Inst.), Alexander J. Millar (Munich, Max Planck Inst.), Ciaran A.J. O'Hare (U. Zaragoza (main)), Javier Redondo (Munich, Max Planck Inst. and Zaragoza U.), Frank D. Steffen (Munich, Max Planck Inst.) (Jun 15, 2018)

Published in: JCAP 11 (2018) 051 • e-Print: 1806.05927 [astro-ph.CO]

Natural DM

Also with other couplings?

Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr)

Dmitry Budker (UC, Berkeley and LBNL, NSD), Peter W. Graham (Stanford U., ITP), Micah Ledbetter (Unlisted, US, CA), Surjeet Rajendran (Stanford U., ITP), Alex Sushkov (Harvard U., Phys. Dept.) (Jun 25, 2013) Published in: *Phys.Rev.X* 4 (2014) 2, 021030 • e-Print: 1306.6089 [hep-ph]

New Observables for Direct Detection of Axion Dark Matter

Peter W. Graham (Stanford U., ITP), Surjeet Rajendran (Stanford U., ITP) (Jun 25, 2013) Published in: *Phys.Rev.D* 88 (2013) 035023 • e-Print: 1306.6088 [hep-ph]

Looking for oscillating dipoles

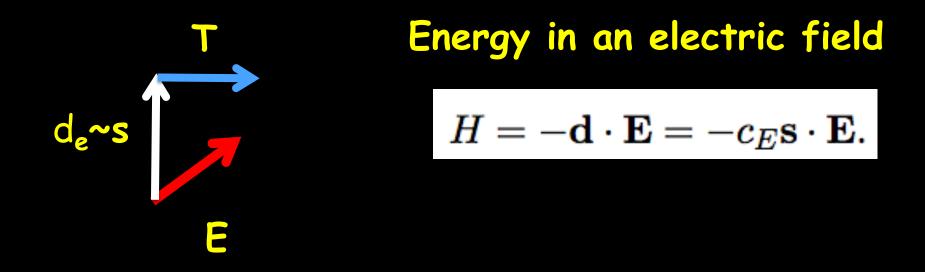
• Remember:

Axion field controls electric dipole moment:

$$d_e \sim \theta \sim \frac{a}{f_a}$$

Dipole moments follow the oscillating axion field
 Tiny oscillating electric dipole

 $d_e \sim 10^{-35} e \operatorname{cm} \cos(m_a t)$


Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr)

Dmitry Budker (UC, Berkeley and LBNL, NSD), Peter W. Graham (Stanford U., ITP), Micah Ledbetter (Unlisted, US, CA), Surjeet Rajendran (Stanford U., ITP), Alex Sushkov (Harvard U., Phys. Dept.) (Jun 25, 2013)

Published in: Phys.Rev.X 4 (2014) 2, 021030 • e-Print: 1306.6089 [hep-ph]

New Observables for Direct Detection of Axion Dark Matter Peter W. Graham, Surjeet Rajendran (Stanford U., ITP). Jun 25, 2013. 13 pp. Published in Phys.Rev. D88 (2013) 035023 DOI: 10.1103/PhysRevD.88.035023 e-Print: arXiv:1306.6088 [hep-ph] | PDF

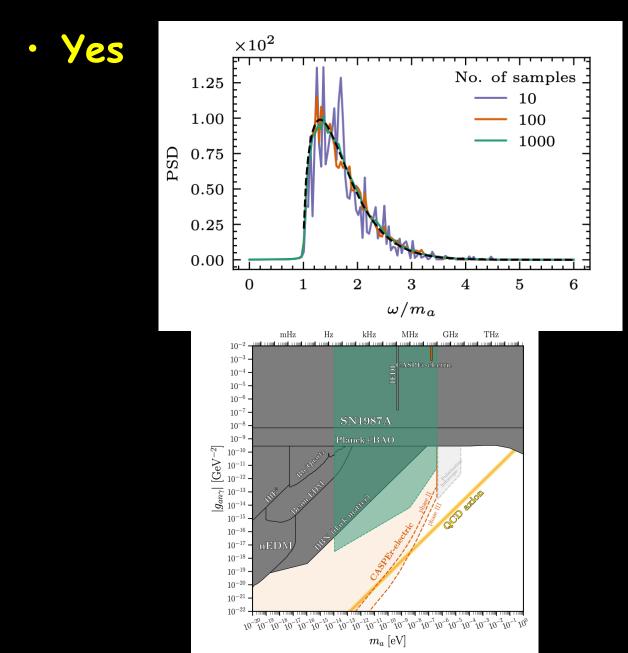
In an electric field

Torque tries to tilt dipole moment/spin

$$\mathbf{T} = \mathbf{d} \times \mathbf{E} = c_E \mathbf{s} \times \mathbf{E}.$$

Dealing with oscillation

Problem: the dipole moment is rapidly oscillating ~m_a


Danger of cancellation

Solution: Rotate spin to compensate → Use Spin Precession in magnetic field

$$\omega_L = 2\mu B$$

Resonance when $\omega_L=m_a$

Measure velocity² distribution?

JJ, C. Quint (in preparation)

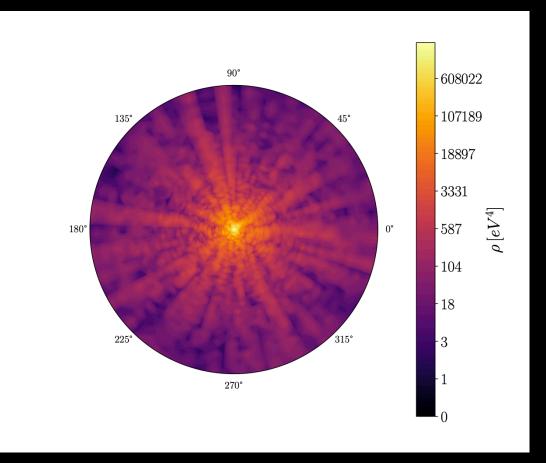
Establishing Axions as "The Dark Matter"

A signal does not yet establish DM

• Once we have a signal...

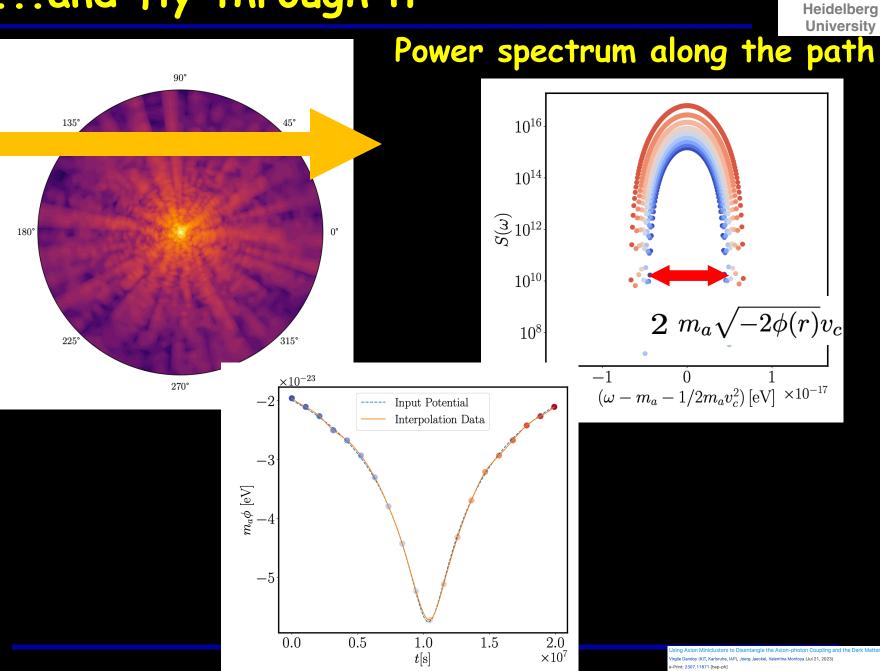
$$P_{
m signal} \sim g^2
ho$$

- g and ρ not independently measured
- We could have detected a sub-dominant DM $\rho \ll \rho_{DM}$


Can we disentangle?

Part I If we are lucky...

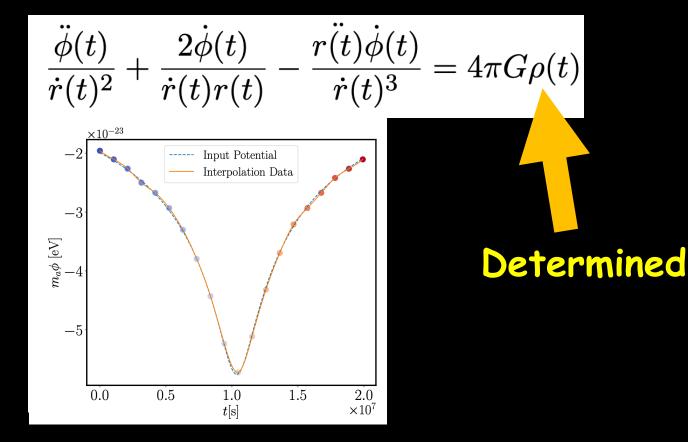
Using Axion Miniclusters to Disentangle the Axion-photon Coupling and the Dark Matter Density Virgile Dandoy (KIT, Karlsruhe, IAP), Joerg Jaeckel, Valentina Montoya (Jul 21, 2023) e-Print: 2307.11871 [hep-ph]


Let's find an Axion Mini-cluster

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Jsing Axion Miniclusters to Disentangle the Axion-photon Coupling and the Dark Matter Densit Irgile Dandoy (KIT, Karlsruhe, IAP), Joerg Jaeckel, Valentina Montoya (Jul 21, 2023) -Print: 2307.11871 (bep-ph)

...and fly through it

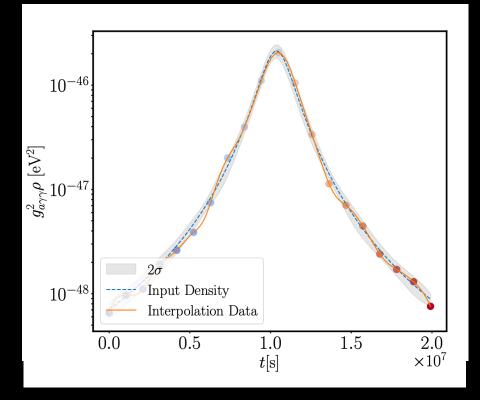

INSTITUT FÜR

THEORETISCHE PHYSIK

Reconstruct minicluster density...

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Poisson equation (along path)



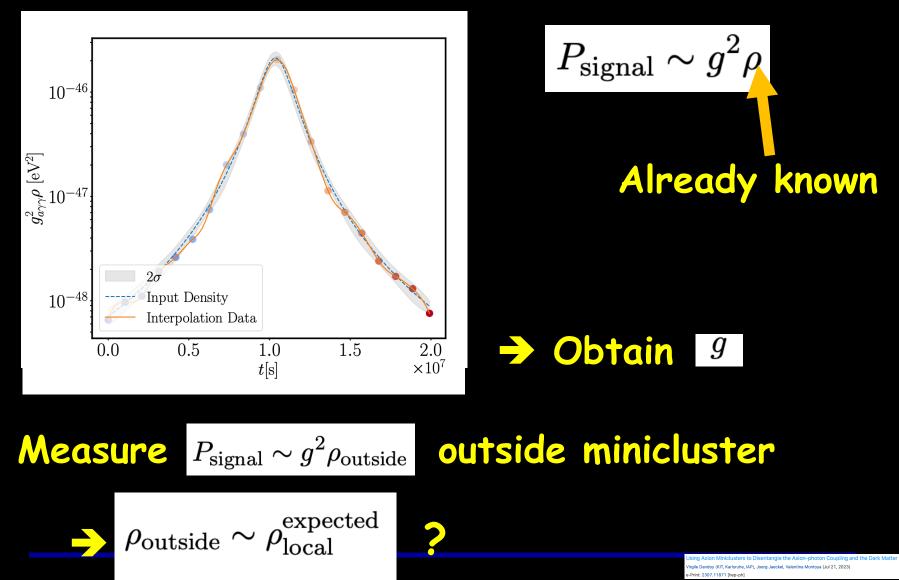
Jsing Axion Miniclusters to Disentangle the Axion-photon Coupling and the Dark Matter Densit irgile Dandoy (KIT, Karlsruhe, IAP), Joerg Jaeckel, Valentina Montoya (Jul 21, 2023) -Print: 2027.11871 (Bep-Ph)

Measure coupling...

Power along the path

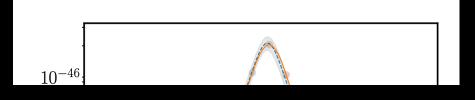
$$P_{\rm signal} \sim g^2 \rho$$

Already known



Jsing Axion Miniclusters to Disentangle the Axion-photon Coupling and the Dark Matter Densil "rigile Dandoy (KT, Karlsruhe, NP), Joerg Jaeckel, Valentina Montoya (Jul 21, 2023) --Print: 2027.11871 [hep-ph]

Measure coupling...


Power along the path

Measure coupling...

Power along the path

$$P_{
m signal} \sim g^2
ho$$

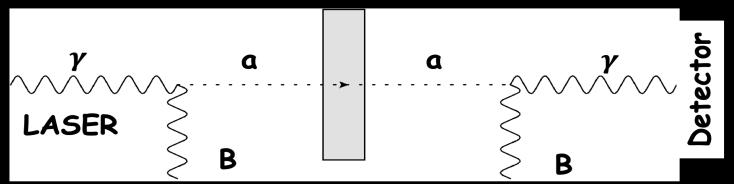
BUT: Need to be lucky ~10⁻³/year (and cluster not too destroyed)

ing Axion Miniclusters to Disentangle the Axion-photon Coupling and the Dark Matter Densi glie Dandoy (KIT, Karlsruhe, IAP), Joerg Jaeckel, Valentina Montoya (Jul 21, 2023) rrint: 2307.11871 [hep-ph]

Part II If we are dedicated...

HyperLSW: Ultimate light-shining-through-a-wall experiments to establish QCD axions as the dominant form of dark matter

Sebastian Hoof (U. Padua, Dept. Phys. Astron. and INFN, Padua), Joerg Jaeckel (U. Heidelberg, ITP), Giuseppe Lucente (U Heidelberg, ITP and Kirchhoff Inst. Phys.) (Jul 5, 2024)

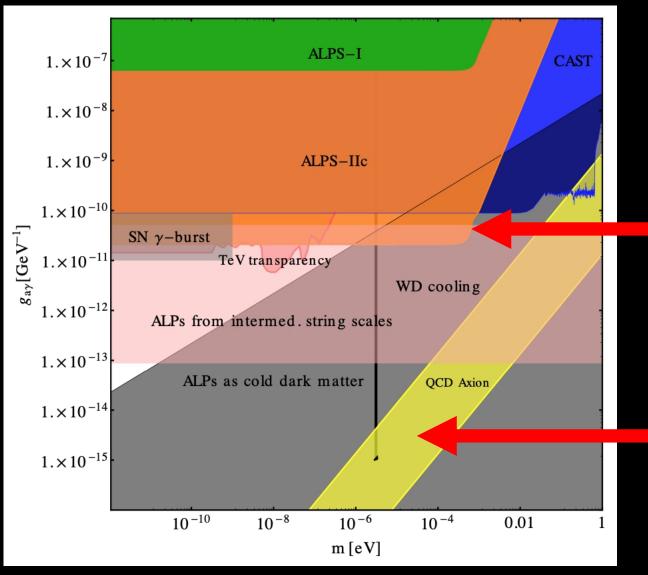

e-Print: 2407.04772 [hep-ph]

We build HyperLSW ©

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

• What is an LSW experiment?

Light shining through walls

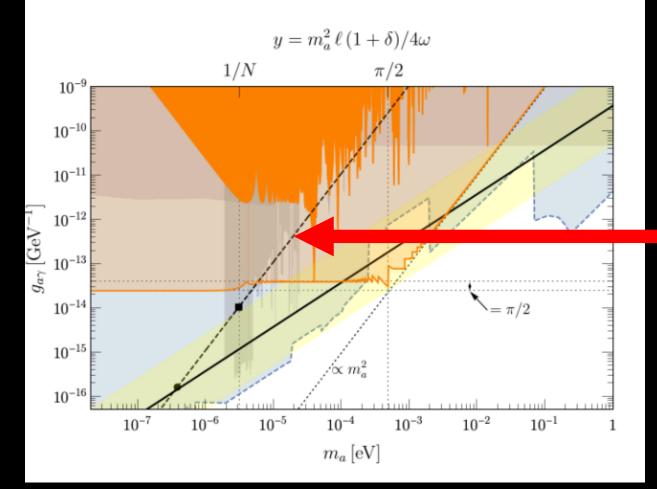

Probability to see the light

$$p_{\gamma\leftrightarrow a}^2 = \frac{\omega^2}{\omega^2 - m_a^2} \left(\frac{g_{a\gamma}BL}{2}\right)^4 |F|^4,$$

Purely laboratory based \rightarrow determine g

Not so easy... ALPS II

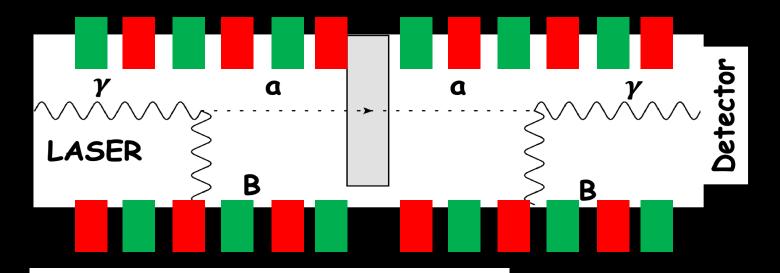
INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

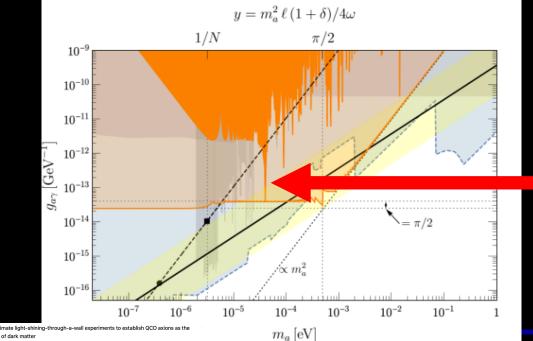


Does not quite reach axion masses

A few orders in sensitivity to go

ALPS II homepage: https://alps.desy.de/our_activities/axion_wisp_experiments/alps_ii




Making magnets longer is not sufficient

HyperLSW: Ultimate light-shining-through-a-wall experiments to establish QCD axions as the dominant form of dark matter

Sebastian Hoof (U. Padua, Dept. Phys. Astron. and INFN, Padua), Joerg Jaeckel (U. Heidelberg, ITP), Giuseppe Lucente (U Heidelberg, ITP and Kirchhoff Inst. Phys.) (Jul 5, 2024) e-Print: 2407.04772 [hep-ph]

Optimize magnet configuration

dominant form of dark matter Sebastian Hoof (U. Padua, Dept. Phys. Astron. and INFN, Padua), Joerg Jaeckel (U. Heidelberg, ITP), Giuseppe Lucente (U. Heidelberg, ITP and Kichhoff Inst. Phys.) (Jul 5, 2024)

Alternating magnets

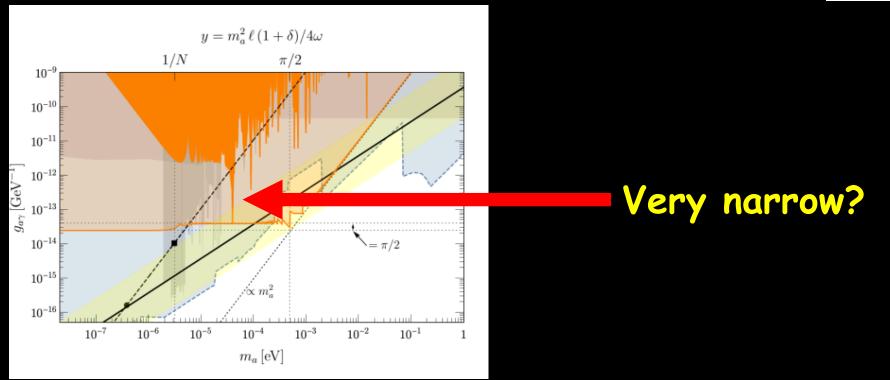
INSTITUT FÜR

THEORETISCHE PHYSIK Heidelberg University

 Proposed experiment to produce and detect light pseudoscalars

 K. Van Bibber (LLNL, Livermore), N.R. Dagdeviren (Caltech), S.E. Koonin (Caltech), A. Kerman (MIT, LNS), H.N.

 Nelson (Stanford U., Phys. Dept. and SLAC) (May, 1987)

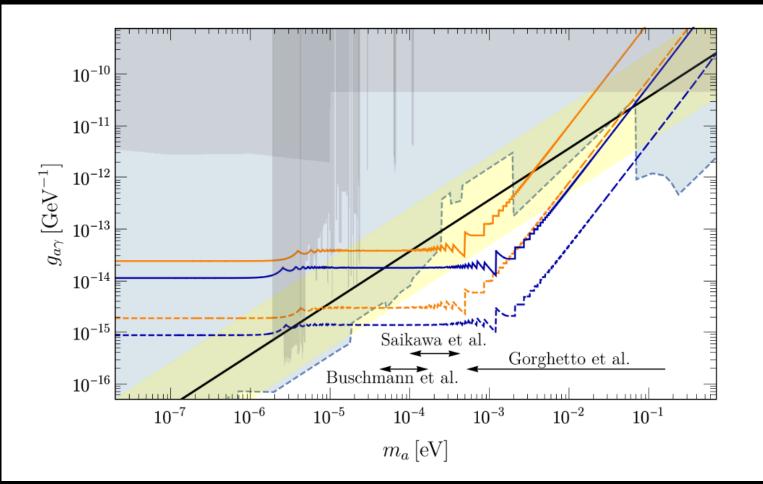

 Published in: Phys.Rev.Lett. 59 (1987) 759-762

 Optimizing Light-Shining-through-a-Wall Experiments for Axion and other WISP Searches

 Paola Arias (DESY), Joerg Jaeckel (Durham U., IPPP), Javier Redondo (Munich, Max Planck Inst.), Andreas Ringwald (DESY)

 (Sep. 2010)

 Published in: Phys.Rev.D 82 (2010) 115018 • e-Print: 1009.4875 [hep-ph]



Not a problem. DM discovery tells us mass with better than 10⁻¹⁰ accuracy

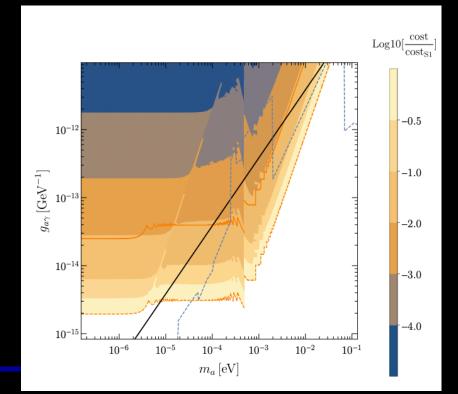
HyperLSW: Ultimate light-shining-through-a-wall experiments to establish QCD axions as the dominant form of dark matter

Sebastian Hoof (U. Padua, Dept. Phys. Astron. and INFN, Padua), Joerg Jaeckel (U. Heidelberg, ITP), Giuseppe Lucente (U Heidelberg, ITP and Kirchhoff Inst. Phys.) (Jul 5, 2024) e-Print: 2407.04772 [hep-ph]

Discovery region

HyperLSW: Ultimate light-shining-through-a-wall experiments to establish QCD axions as the dominant form of dark matter

Sebastian Hoof (U. Padua, Dept. Phys. Astron. and INFN, Padua), Joerg Jaeckel (U. Heidelberg, ITP), Giuseppe Lucente (U Heidelberg, ITP and Kirchhoff Inst. Phys.) (Jul 5, 2024) e-Print: 2407.04772 [hep-ph]


Price tag...

INSTITUT FÜR THEORETISCHE PHYSIK Heidelberg University

Setup	$\to B [T]$	$a~[{ m m}]$	$\ell \ [m]$	$\Delta_{\min}~[m]$	P_{λ} [W]	eta_g	eta_r	$\lambda \; [{ m nm}]$	$arepsilon_{ ext{eff}}$	$\tau~[{\rm h}]$	$b~[\mathrm{s}^{-1}]$	$2 z_{ m opt}$ [km]	$\mathcal{S}_{ ext{crit}}$
S1	10	1.3	4.0	2.0	3	10^5	10^5	1064	0.95	100	10^{-4}	2×94	186.42
S2	12	2.0	0.5	0.5	3	10^{5}	10^{5}	1064	0.95	100	10^{-4}	2×220	186.42
01	10	1.3	4.0	2.0	300	10^5	10^{6}	1064	0.95	5000	10^{-6}	2×79	172.55
O2	12	2.0	0.5	0.5	300	10^{5}	10^{6}	1064	0.95	5000	10^{-6}	2×188	172.55

Long tunnel + many strong magnets ~ few x 100 GEuro

Pick cheapest option

HyperLSW: Ultimate light-shining-through-a-wall experiments to establish QCD axions as the dominant form of dark matter

Sebastin Hoof (U. Padua, Dept. Phys. Astron. and INFN, Padua), Joerg Jaeckel (U. Heidelberg, ITP), Giuseppe Lucente Heidelberg, ITP and Kirchhoff Inst. Phys.) (Jul 5, 2024) e-Print: 2407.04772 (hep-ph) Conclusions

Axion coolest Dark Matter ©

- Current and near future experiments probe best motivated parameter space
- Axion DM can give us much more information:
 - DM density -> Is it THE Dark Matter
 - DM velocity