Primordial Black Holes:

Positivist Perspective, Quantum Quiddity & Correlation Characteristics

Florian Kühnel

Max Planck Institute for Physics, Garching (near Munich), Germany

Focus Week on Primordial Black Holes '24 –
 IPMU, Thursday, the 14th of November 2024

Not only a different President...

... but Strongly Constrained Asteroidal Mass Window

Even the very first paper...

★ PBHs first proposed by Novikov and Zel'dovič in 1967, but their conclusion was negative for the existence of PBHs!

Conclusion heroically disproved by Carr & Hawking (1974),
 reinvigorated PBH research (around 2000 papers to date).

Exemplary: Supernova Evidence

Exemplary:Supernova Evidence

Physics Reports 1054 (2024) 1-68

Observational evidence for primordial black holes: A positivist perspective

PHYSICS REPORTS

B.J. Carr^a, S. Clesse^b, J. García-Bellido^c, M.R.S. Hawkins^d, F. Kühnel^{e,*}

^a School of Physics and Astronomy, Queen Mary University of London, United Kingdom

^b Service de Physique Théorique, University of Brussels (ULB), Belgium

^c Instituto de Física Teórica UAM/CSIC, Universidad Autonoma de Madrid, Spain

^d Department of Physics and Astronomy, University of Edinburgh, United Kingdom

^e Max Planck Institute for Physics, Germany

[[]Carr, Kohri, Sendouda, Yokoyama 2021]

Current PBH Constraints M/M_{\odot} 10^{-15} 10^{-10} 10⁻⁵ 10^{5} 1 10 1 SN RS **WB** K 0.1 Lvd GW S1 0.0 Eri HSC LSS 10^{-3} XB **Substantially** DF 10 f(M)weakened or 10^{-5} might even entirely 10⁻⁶ disappear 10^{-7} due to the n/p10⁻⁸ MB memory-PA **burden effect** EGB 10^{-9} GGB GW2 10⁻¹⁰

10²⁵

 10^{30}

10²⁰

10¹⁵

 10^{40}

10³⁵

[[]Carr, Kohri, Sendouda, Yokoyama 2021]

Quantum Aspects — Memory-Burden Effect

★ Black Holes can be understood as *saturons*, ie. configurations of maximum entropy *compatible with unitarity*.

[Dvali 2021]

Saturons, universally exhibit:

timescale

[Dvali 2021++]

***** exhibit an entropy area-law

black holes

Bekenstein area-law

[Bekenstein 1973]

[Hawking 1975]

† deplete thermally at a rate proportional to their inverse size

[Page 1976]

Hawking radiation

Quantum Aspects — Memory-Burden Effect

Black hole evaporation *leaves the semi-classical regime* at latest at half-mass, possibly much earlier. [Dvali 2021]

★ Evaporation rate Γ becomes *entropy suppressed*

[Dvali et al. 2020]

K. Kohri

$$\Gamma \longrightarrow \frac{1}{S^k} \Gamma, \qquad k \ge 1, \, k \in \mathbb{N}$$

★ Entropy *S* is huge:
$$S \sim 10^{30} \left(\frac{M}{10 \text{ g}}\right)^2$$

This opens up a large mass range for *ultra-light PBHs* as (quasi-)remnants!
see talk by

Quantum Aspects — Memory-Burden Effect

★ This was for:

$$k = 1, \qquad t_{\text{burden}} = M/2$$

There are arguments for the memory-burden effect setting in already at

$$t_{\rm burden} = M/\sqrt{S}$$
 or $t_{\rm burden} = M/S$

★ We showed that (near-)extremally spinning saturons, and hence likely black holes, admit vortex structure.

[Dvali, FK, Zantedeschi 2022]

Emergence of relation between spin and angular momentum

 $S \sim J$

Besides, vorticity provides a topological meaning to the stability of extremal black holes.

(winding *n* = 1; simulation by M. Zantedeschi) Merger simulation of black hole analog configurations (non-topological solitons, i.e. Q-balls)

> [Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

Three cases:

Quantum Aspects — Vortices

no vortex forms: the solitons simply merge;

★ a vortex forms temporary: the final soliton is near the threshold for vortex formation but is eventually ejected;

a vortex forms stably: the final solution attains a vortex.

Quantum Aspects — Vorfices

★ No vortex case (two-dimensional perspective):

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

⁽simulation by M. Zantedeschi)

Quantum Aspects — Vorfices

★ No vortex case (two-dimensional perspective):

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

⁽simulation by M. Zantedeschi)

Temporal vortex formation (two-dimensional perspective):

(simulation by M. Zantedeschi)

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

Temporal vortex formation (two-dimensional perspective):

(simulation by M. Zantedeschi)

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

Proper vortex formation (two-dimensional perspective):

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

⁽simulation by M. Zantedeschi)

Proper vortex formation (two-dimensional perspective):

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2024]

⁽simulation by M. Zantedeschi)

★ Proper vortex formation (three-dimensional perspective):

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2023]

★ Proper vortex formation (three-dimensional perspective):

[Dvali, FK, Kaikov, Valbuena-Bermúdez, Zantedeschi 2023]

Quantum Aspects — Vorfices

- Radiation signatures potentially observable in black hole mergers!
- PBHs from confinement could provide ideal prerequisites for vortex formation due to highly-spinning light PBHs.

[Dvali, FK, Zantedeschi 2021]

- Besides, vorticity provides a topological meaning to the stability of extremal black holes.
- If these PBHs provide the dark matter: Could their vorticity might explain primordial magnetic fields?

[Dvali, Kaikov, FK, Valbuena-Bermúdez, Zantedeschi 2024]

Correlated Random Fields

- ★ Power spectra at PBH scales essentially unknown.
- ★ Quantum diffusion seems to lead to exponential tails
- ★ Performed large(st) (one in 10^{13}) simulation of spatiallycorrelated exponential random fields with power spectra of the form $P(k) \sim k^{\alpha}$

е

Central Limit Theorem — A Recapitulation

- ★ As often as Gauß distributions occur, as little they are questioned.
- ★ Going back to the *Central Limit Theorem*:

† Take random variables $\{\Delta_i\}_{i=1}^N$ iid, with mean μ and variance σ^2

\bigstar Define the sample average $S_N \equiv \frac{1}{N} \sum_{i=1}^N \Delta_i$

Then
$$\lim_{N \to \infty} \operatorname{Prob}\left(\frac{S_N - \mu}{\sqrt{\sigma^2/N}} < \delta\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\delta} \mathrm{d}t \, \exp(-t^2)$$

Questions: What happens for extrema, like maxima? Is this still Gaußian?

Extreme-Value Distributions

- **\bigstar** Define the sample maxima $M_N \equiv \max(\Delta_i)$ i=1,...,N
 - ★ Then if there exists sequences $\{a_N \in \mathbb{R}\}_{N=1}^{\infty}$ and $\{c_N > 0\}_{N=1}^{\infty}$ with

$$\lim_{N \to \infty} \operatorname{Prob}\left(\frac{M_N - a_N}{c_N} < \delta\right) \equiv H(\delta)$$

where $H(\delta)$ is a non-degenerate CDF, then this function necessarily belongs to one of the following (GEV) classes [Fischer, Tippett 1928]

$$H^{s}_{\alpha,\gamma}(\delta) = \exp \begin{cases} -\left[1 + s\left(\frac{\delta - \alpha}{\gamma}\right)\right]^{-1/s} & (s \neq 0) \\ -\exp\left[-\left(\frac{\delta - \alpha}{\gamma}\right)\right] & (s = 0) \end{cases}$$

- s, α and γ are the shape-, location- and scale parameters.
- The choices s = 0, s < 0 and s > 0, correspond to the Gumbel, Fréchet, and Weibull distributions, respectively.

\bigstar Block-maxima PDF obtained by sampling 10¹⁰ blocks

★ PDF *within* each block

★ PBH mass distribution (*preliminary*)

