Simulation of PBH formation using the COSMOS code

Chulmoon Yoo(Nagoya Univ.)

Numerical Simulation of PBH Formation

Introduction:PBH formation

©Focus on PBH formation in radiation dominated era **©**Comoving scale of an inhomogeneity $\sim 1/k$

©GR simulation starting from a super-horizon non-linear initial data

Focus week on PBH@KIPMU

3

Key features of PBH formation simulation

- **OInitially super-horizon inhomogeneity**
 - ⇒ Cosmological expansion is essential
- **ONONLINEAR EVOLUTION IN AN EXPANDING background**
 - ⇒ Not asymptotically flat
 - ⇒ Periodic or asymptotically FLRW boundary cond.

©Scale hierarchy between the collapsing region and Hubble scale

⇒An efficient refinement procedure in the collapsing region is needed

OCritical behavior near the threshold (at least in spherical sym.)

 $M \sim (\delta - \delta_{
m th})^\gamma$

⇒Extremely high resolution is needed to check it

Spherically symmetric simulations

OMany many previous works in spherical sym.

[Niemeyer, Jedamzik astro-ph/9901292], [Shibata, Sasaki gr-qc/9905064], [Hawke, Stewart CQG19(2002)3687]
[Musco, Miller, Rezzolla gr-qc/0412063], [Polnarev, Musco gr-qc/0605122], [Musco, Miller, Polnarev 0811.1452]
[Musco and Miller arXiv:1201.2379], [Polnarev, Nakama, Yokoyama arXiv:1204.6601], [Nakama, Harada, Polnarev, Yokoyama arXiv:1310.3007]
[Nakama arXiv:1408.0955], [Harada, CY, Nakama, Koga arXiv:1503.03934], [Musco arXiv:1809.02127], [Escriva arXiv:1907.13065]
[Escriva,Germani, Sheth arXiv:1907.13311], [Escriva,Germani, Sheth arXiv:2007.05564], [Escriva, Bagui, Clesse arXiv:2209.06196],
[CY, Harada, Hirano, Okawa, Sasaki arXiv:2112.12335], [Escriva, Tada, Yokoyama, CY arXiv:2202.01028],
[Franciolini, Musco, Pani, Urbano arXiv:2209.05959], [Escriva, CY arXiv:2310.16482], [Escriva, Tada, CY arXiv:2311.17760],
[Uehara, Escriva, Harada, Saito, CY arXiv:2401.06329], [Shimada, Escriva, Saito, Uehara, CY arXiv:2411.07648],
[Inui, Joana, Motohashi, Pi, Tada, Yokoyama arXiv:2411.07648] probably and more

*Blue: Including critical behavior but with decaying modes, Red: Growing mode but without critical behavior, Purple: Both are addressed

OTwo main schemes

- Based on Misner-Sharp formulation with comoving gauge
- BSSN like formulation (used in Shibata Sasaki(1999) and COSMOS-S code)

*If you are interested in only spherical cases,

I recommend the Misner-Sharp based numerical simulation. (Probably it's faster)

Non-spherical simulations

Oseveral works so far (focusing on PBH formation)

[CY, Ikeda, Okawa arXiv:1811.00762] Gravitational Collapse of a Massless Scalar Field in a Periodic Box
 [CY, Harada, Okawa arXiv:2004.01042] Threshold of Primordial Black Hole Formation in Nonspherical Collapse
 [de Jong, Aurrekoetxea, Lim arXiv:2109.04896] Primordial black hole formation with full numerical relativity
 [de Jong, Aurrekoetxea, Lim, França arXiv: 2306.11810] Spinning primordial black holes formed during a matter-dominated era
 [CY, Harada, Okawa arXiv:2004.01042] Threshold of Primordial Black Hole Formation in Nonspherical Collapse
 [CY arXiv:2403.11147] Primordial black hole formation from a nonspherical density profile with a misaligned deformation tensor
 [Escriva, CY arXiv:2410.03451] Non-spherical effects on the mass function of Primordial Black Holes
 [Escriva, CY arXiv:2410.03452] Simulations of Ellipsoidal Primordial Black Hole Formation
 [Kitajima JPS meeting@Sapporo]
 [Joana private communication]

*Blue: scalar field system, Red: Fluid, long-wavelength growing mode

OTwo main groups

GRChombo (public without fluid)

•COSMOS (not yet public, to be public?)

about COSMOS

Focus week on PBH@KIPMU

7

About COSMOS

Originally provided by Hirotada Okawa (for E-eqs and real scalar field w/ periodic BC)

◎COSMOS(秋桜) code by C++

[CY, Hirotada Okawa, Ken-ichi Nakao(1306.1389), Hirotada Okawa, Helvi Witek, Vitor Cardoso(1401.1548)]

Chulmoon Yoo

◎Basically follows the SACRA(桜) code by Fortran

[Tetsuro Yamamoto, Masaru Shibata, Keisuke Taniguchi(arXiv:0806.4007)]

OIndependently developed by CY and Okawa-san

OIn the CY side, it is mainly dedicated to PBH formation as follows

- Inhomogeneous coordinate system has been implemented

[CY, Taishi Ikeda, Hirotada Okawa (arXiv:1811.00762)]

- Fluid evolution code has been implemented

[CY, Tomohiro Harada, Hirotada Okawa(arXiv:2004.01042)]

1+1 code for spherical systems has been developed based on COSMOS (COSMOS-S)

[CY, Harada, Hirano, Okawa, Sasaki(arXiv:2112.12335)]

Recently, a mesh refinement procedure has been implemented

Baumgarte-Shapiro-Shibata-Nakamura formalism

. . .

OSpatial metric

$$egin{aligned} \left(\partial_t - eta^i \partial_i
ight)\psi &= rac{1}{6}\psi\left(\partial_ieta^i - lpha K
ight) \ \left(\partial_t - eta^k \partial_k
ight) ilde{\gamma}_{ij} &= -2lpha ilde{A}_{ij} + ilde{\gamma}_{ik}\partial_jeta^k + ilde{\gamma}_{jk}\partial_ieta^k - rac{2}{3}\partial_keta^k ilde{\gamma}_{ij} \end{aligned}$$

©Extrinsic curvature

$$egin{aligned} &\left(\partial_t-eta^k\partial_k
ight)\mathrm{tr}K&=lpha\left(ilde{A}_{ij} ilde{A}^{ij}+rac{2}{3}\mathrm{tr}K^2
ight)- rianglelpha\ &\left(\partial_t-eta^k\partial_k
ight) ilde{A}_{ij}=\mathrm{functions}\ \mathrm{of}\left[\psi, ilde{\gamma},\mathrm{tr}K, ilde{A}, ilde{\Gamma},lpha,eta,\partial\psi, riangle\psi, &\psi, \end{aligned}$$

OAuxiliary variable for numerical stability $ilde{\Gamma}^i := -\mathcal{D}_j ilde{\gamma}^{ij}$

$$\left(\partial_t - eta^k \partial_k
ight) ilde{\Gamma}^i = ext{functions of } [\psi, ilde{\gamma}, ext{tr} K, ilde{A}, ilde{\Gamma}, lpha, eta, \partial\psi, riangle\psi, \cdots]$$

©Eqs. for gauge fixing

Shibata, Nakamura(1995) Baumgarte, Shapiro(1999)

17 evolution eqs.

Dynamical Gauge Conditions

©Time slicing condition(modified version of the "1+log slice"

 $(\partial_t - \beta^i \partial_i) \alpha = -2\alpha (\operatorname{tr} K + 3H_b)$ specialized for cosmological settings)

@Spatial coordinates(~"Hyperbolic Gamma driver")

 $\left(\partial_t - eta^k \partial_k
ight) eta^i = rac{3}{4} B^i$

 $\left(\partial_t - \beta^k \partial_k
ight) B^i = \partial_t \tilde{\Gamma}^i - \frac{3H_b}{B^i} B^i \qquad \qquad \dagger \left(\partial_t - \beta^k \partial_k
ight) B^i = \partial_t \tilde{\Gamma}^i - \frac{\beta^k}{B_k} \partial_k \tilde{\Gamma}^i - \frac{3H_b}{B^i} B^i \quad \text{might be better} \dots$

 \bigcirc 17 + 1 + 6 = 24 variables for geometry

Relativistic Hydro-dynamics

©Energy momentum tensor

 $T_{\mu
u}=(
ho+P)u_{\mu}u_{
u}+Pg_{\mu
u}$

OLORENTZ factor for n^{μ}

 $\Gamma = - u^\mu n_\mu$

Ovelocity U^{μ} relative to n^{μ}

 $u^\mu = \Gamma(n^\mu + U^\mu)$

ORest mass density(ρ_0), specific int. ene.(ε)

 $ho=
ho_0(1+arepsilon)$

ORest mass density measured by n^{μ}

 $D=
ho_0\Gamma$

O"Dynamical" variables

 $ho_*:=\sqrt{\gamma}D,\ S_0:=\sqrt{\gamma}E,\ S_i:=\sqrt{\gamma}p_i$

OFluid equations

$$egin{aligned} &\partial_t
ho_* + \partial_i f^i_{
ho_*} = 0 \ &\partial_t S_0 + \partial_i f^i_{S_0} = -S^i \partial_i lpha + lpha \sqrt{\gamma} S_{ij} K^{ij} \ &\partial_t S_i + \partial_j f^i_{S_j} = -S_0 \partial_i lpha + S_j \partial_i eta^j - rac{1}{2} lpha \sqrt{\gamma} S_{jk} \partial_i \gamma^{jk} \end{aligned}$$

with $egin{array}{ll} f_{
ho_*}^i &=
ho_* V^i =
ho_* (lpha U^i - eta^i) \ f_{S_0}^i &= S_0 V^i + \sqrt{\gamma} P(V^i + eta^i) \ f_{S_j}^i &= S_j V^i + lpha \sqrt{\gamma} \delta^i_j P \end{array}$

O"Primitive" variables

$$ho, \, V^i := u^i/u^0, \, arepsilon$$

Focus week on PBH@KIPMU

Barotropic EoS case

ORelation between the variables

$$\rho_* = \sqrt{\gamma} \Gamma \frac{\rho}{1+\varepsilon}$$

$$S_0 = \sqrt{\gamma} [\Gamma^2(\rho+P) - P]$$

$$S_i = \sqrt{\gamma} (E+P) U_i = \frac{1}{\alpha} (S_0 + \sqrt{\gamma} P) \gamma_{ij} (V^i + \beta^i)$$

$$p^{\mu} p_{\mu} - E^2 - (P - \rho) E + \rho P = 0$$

$$For P = (a, \varepsilon)$$

$$For P = (a, \varepsilon)$$

$$P = (a, \varepsilon)$$

OBarotropic EoS $P=P(\rho)$

 $\rho = \rho$ (dynamical variables)

$$V^i=lpha U^i-eta^i=lpharac{\gamma^{\imath\jmath}S_j}{S_0+\sqrt{\gamma}P}-eta$$

Equations are closed without ρ_* (or equivalently ϵ) \Rightarrow we don't need to solve the continuity eq.

$$ho = rac{1}{2w} igg[-(1-w)E + \sqrt{E^2(1-w)^2 + 4w(E^2-p^\mu p_\mu)} igg]$$

Focus week on PBH@KIPMU

 $\bigcirc P = w\rho$

Equations for fluid

O4(+1) equations

$$egin{aligned} &\partial_t S_0 + \partial_i f^i_{S_0} = -S^i \partial_i lpha + lpha \sqrt{\gamma} S_{ij} K^{ij} \ &\partial_t S_i + \partial_j f^i_{S_j} = -S_0 \partial_i lpha + S_j \partial_i eta^j - rac{1}{2} lpha \sqrt{\gamma} S_{jk} \partial_i \gamma^{jk} \ &(\partial_t
ho_* + \partial_i f^i_{
ho_*} = 0) \end{aligned}$$

©Scheme for the flux calculation

A central scheme with MUSCL(Mono Upstream-centered Scheme for Conservation Laws) Kurganov, Tadmor(2000) Shibata, Font(2005)

©Totally 24 equations for geometry and 4+1 equations for fluid = 28 +1 equations

Equations for scalar field

©2 equations

$$egin{aligned} & (\partial_t - eta^i \partial_i) \phi = -lpha \Pi \ & (\partial_t - eta^i \partial_i) \Pi = -lpha riangle \phi - \gamma^{\mu
u} \partial_\mu lpha \partial_
u \phi + lpha K \Pi + lpha V'(\phi) \end{aligned}$$

OStress-energy tensor

$$egin{aligned} E^{
m sc} &= n^{\mu}n^{
u}T^{
m sc}_{\mu
u} = rac{1}{2}\Pi^2 + rac{1}{2}\psi^{-4} ilde{\gamma}^{ij}\partial_i\phi\partial_j\phi + V, \ J^{
m sc}_i &= -\gamma^{\,\mu}_i n^{
u}T^{
m sc}_{\mu
u} = \Pi\partial_i\phi, \ S^{
m sc}_{ij} &= \gamma^{\,\mu}_i \gamma^{\,
u}_j T^{
m sc}_{\mu
u} = \partial_i\phi\partial_j\phi - rac{1}{2} ilde{\gamma}_{ij} ilde{\gamma}^{kl}\partial_k\phi\partial_l\phi + rac{1}{2}\psi^4 ilde{\gamma}_{ij}\Pi^2 - \psi^4 ilde{\gamma}_{ij}V \end{aligned}$$

©Totally 24 equations for geometry 4+1 equations for fluid

2 equations for scalar = 30 +1 equations

Black Hole Universe

[CY, Okawa, Nakao arXiv:1306.1389]

Focus week on PBH@KIPMU

Black Hole Universe

OThe evolution is well fitted with EdS

Massless scalar field in a periodic box

[CY, Ikeda, Okawa arXiv:1811.00762]

Summary of schemes

OGeometry + massless scalar field

OReflection boundary condition

Ofor geometry BSSN + 1+log slice + Gamma driver

OResolution

Scale-up reference coordinates xⁱ
 related to the Cartesian coord. Xⁱ by

 $X^i = x^i - rac{S}{1+S}rac{L}{\pi}{
m sin}ig(rac{\pi}{L}x^iig)$

Resolution at the center

$$\Delta X|_{\text{center}} = \frac{1}{1+S} \Delta x$$

Horizon formation and background evolution

OWithout BH formation

OWith BH formation

Focus week on PBH@KIPMU

PBH spin with p=wp (w=½ and $\frac{1}{3}$)

[CY arXiv:2403.11147]

Rough sketch of mesh refinement

OTwice finer resolution in a local spacetime patch

Summary of resolution difference

©Resolution in previous simulation [CY, Harada, Okawa arXiv:2004.01042]

Scale-up reference coordinates xⁱ related to the Cartesian coord. Xⁱ by

$$X^i = x^i - rac{S}{1+S} rac{L}{\pi} {
m sin}ig(rac{\pi}{L} x^iig) ext{ with } S = 15$$

• Resolution at the center ($\Delta x = L/100$)

$$\Delta X|_{\text{center}} = \frac{1}{1+S} \Delta x = \frac{1}{16} \frac{L}{100} = \frac{L}{1600}$$

ONew simulation with mesh refinement [CY arXiv:2403.11147]

• $S = 10, \Delta x = L/60$

•Two additional layers for the mesh refinement

$$\Delta X|_{ ext{center}} = rac{1}{1+S} imes rac{1}{2^2} imes \Delta x = rac{1}{44} imes rac{L}{60} = rac{L}{2640}$$

Focus week on PBH@KIPMU

Initial condition for full numerical simulation

OInitial curvature perturbation

$$egin{aligned} &rac{\zeta}{\mu}:=-rac{2}{\mu} ext{ln}\,\Psi\simeq-1+rac{1}{2}ig(k_1^2(x+y)^2/2+k_2^2(x-y)^2/2+k_3^2z^2ig)+\mathcal{O}(r^4)\ &rac{ riangle \zeta}{\mu k^2}\simeq 1-rac{1}{2}ig(\kappa_1^2x^2+\kappa_2^2y^2+\kappa_3^2z^2ig)+\mathcal{O}(r^4) \end{aligned}$$

 $\zeta \sim$ gravitational potential on (x,y) plane

Chulmoon Yoo

Parameter setting

OInitial curvature perturbation

$$\begin{split} \frac{\zeta}{\mu} &\simeq -1 + \frac{1}{2} (k_1^2 (x+y)^2 / 2 + k_2^2 (x-y)^2 / 2 + k_3^2 z^2) + \mathcal{O}(r^4) \\ k_1^2 &= \frac{1}{3} (\xi_1 + 3\xi_2 + \xi_3) \qquad k_2^2 = \frac{1}{3} (\xi_1 - 3\xi_2 + \xi_3) \qquad k_3^2 = \frac{1}{3} (\xi_1 - 2\xi_3) \\ \frac{\Delta \zeta}{\mu k^2} &\simeq 1 - \frac{1}{2} (\kappa_1^2 x^2 + \kappa_2^2 y^2 + \kappa_3^2 z^2) + \mathcal{O}(r^4) \\ \kappa_1^2 &= \frac{1}{3} (\tilde{\xi}_1 + 3\tilde{\xi}_2 + \tilde{\xi}_3) \qquad \kappa_2^2 = \frac{1}{3} (\tilde{\xi}_1 - 3\tilde{\xi}_2 + \tilde{\xi}_3) \qquad \kappa_3^2 = \frac{1}{3} (\tilde{\xi}_1 - 2\tilde{\xi}_3) \end{split}$$

OWith reference to the peak theory

Strong correlation between $\vec{k}^2 = \xi_1$ and $\vec{\kappa}^2 = \tilde{\xi}_1$ \Rightarrow We set $\vec{k}^2 = \vec{\kappa}^2 = \xi_1 = \tilde{\xi}_1 = 100/L^2$ Probability for $\hat{\xi}_2 := \xi_2/\sigma_2$ and $\hat{\xi}_3 = \xi_3/\sigma_2$ $\xi_3 = \tilde{\xi}_3 = 0$ The most probable values $P(\hat{\xi}_2, \hat{\xi}_3) = \frac{5^{5/2}3^2}{\sqrt{2\pi}} \hat{\xi}_2(\hat{\xi}_2^2 - \hat{\xi}_3^2) \exp\left[-\frac{5}{2}(3\hat{\xi}_2^2 + \hat{\xi}_3^2)\right]$ $\xi_2 = 10/L^2$ $\Rightarrow \hat{\xi}_3 \approx 0, \ \xi_2 = \hat{\xi}_2\sigma_2 \sim \hat{\xi}_2\sigma k^2 \sim 5/L^2$ $\tilde{\xi}_2 = 15/L^2$ Too large to be statistically expected \Rightarrow Too much idealized for spin generation **Focus week on PBH@KIPMU** Chulmoon Yoo

Snapshots

\bigcirc w=p/p=1/3, amplitude µ=0.92 case

Focus week on PBH@KIPMU

Effective spin parameter

OKerr black hole case

Effective spin parameter

Focus week on PBH@KIPMU

Non-sphericity

Focus week on PBH@KIPMU

Spin of PBH is very small

for the equation of states p=wp with w>1/5

OCaveats

- Results only for a specific initial profile
- The case in which the amplitude is very close to the critical value
- etc.

PBH formation in MD(?)

GR N body simulation

©Spindle collapse (asymptotically flat) [CY, Harada, Okawa arXiv:2004.01042]

Code structure

Codes

©COSMOS

- -3+1 dim, 4th order Rungekutta
- Geometry+fluid(P=wp)+Real Scalar
- Non-Cartesian coord.
- Mesh-refinement
- Apparent horizon finder
- Excision(cubic domain)
- Curvature invariants calculation
- Constraints solver(SOR method, not so reliable)

•Elliptic eq. solver for Maximal slice and minimal distortion(SOR, not so reliable) ©COSMOS S

- Spherical sym. with CARTOON method with spline interpolation
- Asymptotically FLRW boundary cond.
- Non-Cartesian + mesh refinement

Should we make it public...? Do you want?

Thank you for your attention

Thank you for your attention

Should we make it public...? Do you want?

Focus week on PBH@KIPMU