Spins of Primordial Black Holes in a matter-dominated era

Daiki Saito (Nagoya U.) with T.Harada (Rikkyo U.), Y.Koga (YITP), C-M.Yoo (Nagoya U.)

Based on 2409.00435 [gr-qc] accepted for JCAP

PBH: BH formed in the early universe (Needless to say ...)

- · Remnant of primordial inhomogeneity (Primordial scalar perturbation)
- Candidate for DM
- Candidate for supermassive BH
- Source for GW (Binary, 2nd order GW)

How PBHs form?

- · (typically) formed in the RD era
- Formed from e.g. collapse of density fluctuation

Q. What characterize formed PBH? What is observable?

A. Mass & Angular momentum
Theory: No-hair theorem
Obs.: GW from BBH

$$\mathcal{M} = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}} \qquad q = \frac{M_2}{M_2}$$

$$\chi_{\text{eff}} = \frac{M_1 \vec{S}_1 + M_2 \vec{S}_2}{M_1 + M_2} \cdot \vec{L}$$

Our interest: Estimate spin of a single PBH

In RD era: spin is small $a_* \lesssim O(10^{-3})$

$$a_* = \frac{a}{M}$$
 : non-dim. Kerr parameter

Fluctuation with high peak — near-spherical collapse (: Peak theory)

Soft EoS: spin is amplified [DS, Harada, Koga, and Yoo 2023]

$$\sqrt{\langle a_*^2 \rangle} = O(0.1)$$
 for $w \le 0.06$

- Q. What characterize formed PBH? What is observable?
- A. Mass & Angular momentum
 Theory: No-hair theorem
 Obs.: GW from BBH

$$\mathcal{M} = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}} \qquad q = \frac{M_2}{M_1}$$

$$\chi_{\text{eff}} = \frac{M_1 \vec{S}_1 + M_2 \vec{S}_2}{M_1 + M_2} \cdot \vec{L}$$

Our interest: Estimate spin of a single PBH

In RD era: spin is small $a_* \lesssim O(10^{-3})$

$$a_* = \frac{a}{M}$$
 : non-dim. Kerr parameter

Fluctuation with high peak — near-spherical collapse (: Peak theory)

How about other scenarios?

In this work, we discuss PBH spin in MD era

MD era: no pressure gradient

fluctuation with small amp. may collapse can be highly non-spherical
 other mechanisms e.g.
 fluctuation with small amp. may collapse can be highly non-spherical
 [Khlopov and Pornalev 1980, Harada Yoo, Kohri, Nakao, and Jhingan 2016]
 of fluctuation may impede collpase [Harada, Kohri, Sasaki, Terada, and Yoo 2022]
 [Harada, Yoo, Kohri, and Nakao 2017]

Rotation could be important for PBH formation (even before it forms!)

This work: focus on spin effect of fluid on PBH formation

Aim:

- Discuss spin effect in overdense region on PBH formation
- Evaluate spin of resulting PBH

Strategy:

Compute angular momentum inside closed region based on perturbative method

We may investigate PBH formation threshold & typical spin of PBH

Assumptions

Strategy:

Compute angular momentum inside closed region (Tidal torque of fluid)

Assumptions:

- Matter: dust fluid —> Newtonian approximation
- · Background: Einstein de Sitter (Spatially flat, matter dominated)
- Apply the Zel'dovich approx. Discuss in Lagrange coord. $\vec{x} = \vec{q} + \vec{D}(t, \vec{q})$

Linearize displacement
$$\ \vec{D}(t,\vec{q}) \propto - \nabla_{\vec{q}} \psi(t,\vec{q})$$
 Grav. Pot

- Focus on linear order effects in perturbation $\left(ec{D}(t,ec{q}) \right)$ on spir
- Gravitational potential $\psi(t,\vec{q})$: random Gaussian field $\langle \psi_{\vec{k}}\psi_{\vec{k}'}^* \rangle \propto \delta^3 \Big(\vec{k}-\vec{k}'\Big) P_{\psi}(k)$

Spin in a closed region

 Σ : collapsing region (overdense region: $\delta(\vec{x}) > 0$) \sim ellipsoid aroud density peak

Spin in a closed region

 Σ : collapsing region (overdense region) \sim ellipsoid

$$\sim$$

Spin inside
$$\Sigma: \vec{S} := \int_{\Sigma} d^3(a\vec{x}) \rho(a\vec{x} \times \vec{v})$$

$$\sim ([A_2^2 - A_3^2]v_{23}, [A_3^2 - A_1^2]v_{13}, [A_1^2 - A_2^2]v_{12})$$

Linear order effect

$$A_i \sim rac{\partial^2 \delta}{\partial q^i \partial q^j}$$
 : "curvature" of δ $v_{kl} \sim rac{\partial^2 \psi}{\partial q^l \partial q^k}$: "curvature" of ψ $ec{S} \sim ext{Products of curvature of } \psi$ and δ

 $S_i \neq 0 \Rightarrow \text{non-spherical } \Sigma$ & misallignment of ψ and δ (tidal torque)

M : mass inside Σ —— Non-dimensional spin $a_{*i} = \frac{S_i}{M^2}$

depends on $\delta, \delta_{ij}, v_{ij}$

Peak theory and RMS of spin

Statistics of fluctuation $V_i = \{\delta, \partial_i \delta, \partial_{ij} \delta, v_{ij}\}$ $\rightarrow \sqrt{\langle a_*^2 \rangle}$ $\nu = \frac{\delta_{\rm pk}}{\sigma_0}$ $\lambda_i \sim -\frac{\partial_i^2 \delta_{\rm pk}}{\sigma_2}$ $w_i \sim -\frac{\psi_{,ij}}{\sigma_0}$ (Non-diag.) We want to know RMS of spin $a_*(\delta, \delta_{ij}, v_{ij}, t)$

$$\sigma_j^2 := \int rac{d^3ec k}{(2\pi)^3} k^{2j} |\delta_{ec k}|^2 \ \sigma_{
m H} := \sigma_0(t_{
m H}) \ t_{
m H}$$
: horizon reentry $u = rac{\delta_{
m pk}}{\sigma_0} \qquad \lambda_i \sim -rac{\partial_i^2 \delta_{
m pk}}{\sigma_2} \qquad w_i \sim -rac{\psi_{,ij}}{\sigma_0} \ ext{(Non-diag.)}$

 $Q(\lambda_i)$: (non-dim) quadrupole moment

 $\psi(ec{q})$: Gaussian lacksquare V_i are Gaussian at linear order

Peak theory: theory for statistics of peaks of Gaussian variables [Bardeen, Bond, Kaiser, and Szalay, 1984]

Gaussian distribution
$$f(V_i)d^{16}V_i = \frac{1}{(2\pi)^8\sqrt{\det M}}\exp\left[-\frac{1}{2}V_i(M^{-1})^{ij}V_j\right]d^{16}V_i$$
 $M_{ij} = \langle V_iV_j\rangle$: correlation

Integration, # density of density peak $\mathcal{N}_{pk}(\nu, \lambda_i, w_i)$

Average of a_* over shapes $\lambda_i \sim \partial_i \partial_j \delta$, $w_i \sim \partial_i \partial_j \psi$

evaluate at turn-around time $t_{
m ta}$: fluctuation turn to collapse ~ maximum expansion in dust universe

$$\rightarrow \bar{a}_*(\nu, t_{ta}) = \frac{2^{1/2} \cdot 3}{5^{3/2}} \sqrt{1 - \gamma^2} \sigma_{H}^{-1/2} \sqrt{\langle Q^2 \rangle_{\lambda}}$$

Result: spin of overdensity

RMS of spin at turn-around time

$$\bar{a}_*(\nu, t_{\rm ta}) = \frac{2^{1/2} \cdot 3}{5^{3/2}} \sqrt{1 - \gamma^2} \sigma_{\rm H}^{-1/2} \sqrt{\langle Q^2 \rangle_{\lambda}}$$

• Smaller $\sigma_{\rm H} = \langle \delta(t_{\rm H})^2 \rangle^{\frac{1}{2}}$ gives larger spin Smaller initial fluctuation grows larger until turn-around (collapse)

$$\frac{t_{\rm ta}}{t_{\rm H}} \sim (\nu \sigma_{\rm H})^{-3/2} = \delta_{\rm H}^{-3/2}$$

• $\gamma \coloneqq \frac{\sigma_1^2}{\sigma_0 \sigma_2}$: narrowness of power spectrum Wider power spectrum gives larger spin

$$u = rac{\delta_{pk}}{\sigma_0} \qquad \gamma := rac{\sigma_1^2}{\sigma_0 \sigma_2} \qquad \sigma_j^2 := \int rac{d^3 \vec{k}}{(2\pi)^3} k^{2j} |\delta_{\vec{k}}|^2$$
 $\sigma_{\mathrm{H}} := \sigma_0(t_{\mathrm{H}}) \qquad t_{\mathrm{H}} : \text{horizon reentry time}$

 ${\cal Q}$: (non-dim) quadrupole moment

Result: spin of overdensity

RMS of spin at turn-around time

$$\bar{a}_*(\nu, t_{\rm ta}) = \frac{2^{1/2} \cdot 3}{5^{3/2}} \sqrt{1 - \gamma^2} \sigma_{\rm H}^{-1/2} \sqrt{\langle Q^2 \rangle_{\lambda}}$$

Decreases with amplitude ν

For small ν , we have $\bar{a}_*(\nu) > 1$

Prohibited for BH Can't regard as BH spin

Rotation should prevent collapse

$$u = rac{\delta_{pk}}{\sigma_0} \qquad \gamma := rac{\sigma_1^2}{\sigma_0 \sigma_2} \qquad \sigma_j^2 := \int rac{d^3 ec{k}}{(2\pi)^3} k^{2j} |\delta_{ec{k}}|^2$$
 $\sigma_{
m H} := \sigma_0(t_{
m H}) \qquad t_{
m H} : ext{horizon reentry time}$

 ${\cal Q}\,$: (non-dim) quadrupole moment

Result: spin of overdensity

RMS of spin at turn-around time

$$\bar{a}_*(\nu, t_{\rm ta}) = \frac{2^{1/2} \cdot 3}{5^{3/2}} \sqrt{1 - \gamma^2} \sigma_{\rm H}^{-1/2} \sqrt{\langle Q^2 \rangle_{\lambda}}$$

Decreases with amplitude ν

For small ν , we have $\bar{a}_*(\nu) > 1$

Prohibited for BH Can't regard as BH spin

Rotation should prevent collapse

Threshold of ν / δ for PBH formation

$$u = rac{\delta_{pk}}{\sigma_0}$$
 $\gamma := rac{\sigma_1^2}{\sigma_0 \sigma_2}$
 $\sigma_j^2 := \int rac{d^3 ec{k}}{(2\pi)^3} k^{2j} |\delta_{ec{k}}|^2$
 $\sigma_{
m H} := \sigma_0(t_{
m H})$
 $t_{
m H} : \text{horizon reentry time}$

Q: (non-dim) quadrupole moment

What we've discussed: Rapid rotation of fluid impede PBH formation Q: How significant this on PBH abundance?

Comparison with effect of anisotropy

Anisotropy and PBH collapse [Harada Yoo, Kohri, Nakao, and Jhingan 2016]
 Fluctuation with large anisotropy can't collapse

Condition for collapse: Hoop conjecture [Thorne 1972]

 $C \le 4\pi M$

Mass

In terms of fluctuation,

$$h(\alpha,\beta,\gamma) \leq 1 \qquad \qquad h(\alpha,\beta,\gamma) \coloneqq \frac{2}{\pi} \frac{\alpha - \gamma}{\alpha^2} E\left(\sqrt{1 - \left(\frac{\alpha - \beta}{\alpha - \gamma}\right)^2}\right) \qquad (\alpha,\beta,\gamma) \; : \text{Eigenvalue of } -\frac{\partial^2 \psi}{\partial q^l \partial q^k}(t_{\mathrm{H}})$$

Note: We have not consider anisotropy effect in evaluating $\bar{a}_*(\nu)$

PBH abundance with spin & non-spherical effect

Threshold from spin

$$\bar{a}_*(\nu) \le 1$$

Threshold from anisotropy [Harada Yoo, Kohri, Nakao, and Jhingan 2016]

Hoop conjecture [Thorne 1972]

Condition for collapse

$$h(\alpha, \beta, \gamma) \le 1$$

$$h(\alpha, \beta, \gamma) := \frac{2}{\pi} \frac{\alpha - \gamma}{\alpha^2} E\left(\sqrt{1 - \left(\frac{\alpha - \beta}{\alpha - \gamma}\right)^2}\right)$$

PBH abundance with spin & non-spherical effect

$$\sigma_j^2 := \int \frac{d^3 \vec{k}}{(2\pi)^3} k^{2j} |\delta_{\vec{k}}|^2 \quad \sigma_{\rm H} := \sigma_0(t_{\rm H}) = \sqrt{\langle \delta(t_{\rm H})^2 \rangle}$$

$$\beta_0 \simeq \int d\alpha d\beta d\gamma \theta [\delta_{\rm H}(\alpha,\beta,\gamma) - \delta_{\rm H,th}] \theta [1 - h(\alpha,\beta,\gamma)] w(\alpha,\beta,\gamma)$$
 spin anisotropy

- Large variance of fluctuation $(\sigma_{\rm H} > 10^{-3})$
 - -tt--t--t--it--it--it---it----t
 - Effect of ellipticity is significant
- Small variance of fluctuation

$$(\sigma_{\rm H} \le 10^{-3})$$

Effect of spin is significant

PBH abundance with spin & non-spherical effect

$$\sigma_j^2 := \int \frac{d^3 \vec{k}}{(2\pi)^3} k^{2j} |\delta_{\vec{k}}|^2 \quad \sigma_{\rm H} := \sigma_0(t_{\rm H}) = \sqrt{\langle \delta(t_{\rm H})^2 \rangle}$$

$$\beta_0 \simeq \int d\alpha d\beta d\gamma \theta [\delta_{\rm H}(\alpha,\beta,\gamma) - \delta_{\rm H,th}] \theta [1 - h(\alpha,\beta,\gamma)] w(\alpha,\beta,\gamma)$$
 spin anisotropy

Large variance of fluctuation

$$(\sigma_{\rm H} > 10^{-3})$$

Effect of ellipticity is significant

Small variance of fluctuation

$$(\sigma_{\rm H} \le 10^{-3})$$

Effect of spin is significant

Result: probability for spin

 $\mathcal{N}_{\mathrm{pk},\nu}(\nu)$:number density of peak with ν (:: peak theory) $a_* = \bar{a}_*(\nu)$ Probability distribution for PBH spin $P(\bar{a}_*)$

- Peaks at $\bar{a}_* = O(10^{-1})$: larger than RD era ($\sqrt{\langle a_*^2 \rangle} \sim O(10^{-2})$)
- Larger peak for smaller $\sigma_{\rm H}$

$$\bar{a}_* = \bar{a}_*(\nu)$$

Summary

- We have estimated the PBH spin in MD era perturbatively, using peak theory
- For small amplitude of fluctuation, we have $a_* > 1$
 - Threshold for amplitude (Spin prevents gravitational collapse)
- Suppress PBH abundance for small variance of fluctuation
- $P(\bar{a}_*)$ peaks at $\bar{a}_* = O(10^{-1})$

Thank you for attention!!