origin of gold: supernovae vs neutron star mergers

Shinya Wanajo (RIKEN iTHES)

with
Y. Sekiguchi (YITP), N. Nishimura (Keele Univ.),
K. Kiuchi, K. Kyutoku, M. Shibata (YITP)

Kavli IPMU - RIKEN iTHES - Osaka TSRP Symposium
"Frontiers of Theoretical Science – MATTER, LIFE and COSMOS – "
November 6, 2014, Kavli IPMU, Japan

origin of gold (r-process elements) is still unknown...

www.cartier.jp

origin of elements beyond iron

understood (big bang, cosmic rays, stellar evolutions, supernovae)

not understood

not fully understood, in particular noble metal, rare earth, actinide

two neutron capture processes

$$au_{ ext{n-capture}} >> au_{ ext{eta-de}}$$

* slow-process:
$$\tau_{\text{n-capture}} >> \tau_{\beta\text{-decay}} \rightarrow N_{\text{peak}} = N_{\text{magic}}$$

$$au_{ ext{n-capture}}$$
 << $au_{ ext{eta-decay}}$

* rapid-process:
$$\tau_{\text{n-capture}} << \tau_{\beta\text{-decay}} \rightarrow N_{\text{peak}} < N_{\text{magic}}$$

s-process and r-process

where do we have neutrons?

core-collapse supernovae (since Burbidge+1957; Cameron 1957)

- n-rich ejecta nearby proto-NS
- not promising according to recent studies

neutron-star mergers (since Lattimer+1974; Symbalisty+1982)

- n-rich ejecta from coalescing NS-NS or BH-NS
- few nucleosynthesis studies

"constant surprise" in the early Galaxy

surviving old stars record nucleosynthesis memories in the early universe

- r-process enhanced stars show constant abundance patterns
- the r-process should be "universal", always having solar-like abundance patterns

supernova ejecta: not so neutron-rich

 $\Upsilon_{\rm e}$ is determined by

$$v_e + n \rightarrow p + e^ \overline{v}_e + p \rightarrow n + e^+$$

* equilibrium value is

$$Y_{\rm e} \sim \left[1 + \frac{L_{\overline{\nu}e}}{L_{\nu e}} \frac{\varepsilon_{\overline{\nu}e} - 2\Delta}{\varepsilon_{\nu e} + 2\Delta}\right]^{-1},$$

$$\Delta = M_{\rm n} - M_{\rm p} \approx 1.29 \text{ MeV}$$

 \Leftrightarrow for $Y_e < 0.5$ (i.e., n-rich)

$$\varepsilon_{\overline{\nu}e} - \varepsilon_{\nu e} > 4\Delta \sim 5 \text{ MeV}$$

if $L_{\overline{\nu}e} \approx L_{\nu e}$

Matter, Life, Cosmos

Wanajo

supernova ejecta: no r-process

nucleosynthesis studies based on neutrino transport simulations of supernovae (Wanajo+2011, 2013)

- roduction of light trans-iron elements (Z = 30-40, A = 60-90) up to Sr, Y, Zr
- ❖ no r-process because of only slight n-richness (v's convert n to p, resulting in n/p ~ 1)

NS merger scenario: most promising?

- ❖ coalescence of binary NSs expected ~ 10 − 100 per Myr in the Galaxy (also possible sources of short GRBs and GW signals)
- ❖ first ~ 0.1 seconds dynamical ejection of n-rich matter up to $M_{\rm ej}$ ~ 10^{-2} M_{\odot}
- •• next ~ 1 second
 neutrino or magnetically driven
 wind from the BH accretion torus
 up to $M_{\rm ei}$ ~ 10⁻² M_{\odot} ??

previous works: too neutron-rich?

Goriely+2011 (also similar results by Korobkin+2011; Rosswog+2013)

tidal (or weakly shocked) ejection of "pure" n-matter with $Y_e < 0.1$

- strong r-process leading to fission recycling
- ❖ severe problem: only A > 120; another source is needed for the lighter counterpart

first simulation with full-GR and ν

- Approximate solution by Thorne's Moment scheme with a closure relation
- Leakage + Neutrino heating (absorption on proton/neutron) included

neutrinos save the merger scenario

- neutrino absorption on free nucleons (and their inverse) results in less neutron-rich ejecta
- good agreement with full solar r-process range for A = 90-240

mass number

r-process glitter associated with a GRB

LETTER

doi:10.1038/nature12505

A 'kilonova' associated with the short-duration

γ-ray burst GRB 130603B

N. R. Tanvir¹, A. J. Levan², A. S. Fruchter³, J. Hjorth⁴, R. A. Hounsell³, K

Short-duration γ -ray bursts are intense flashes of cosmic γ -rays, lasting less than about two seconds, whose origin is unclear^{1,2}. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole). This is supported by indirect evidence such as the properties of their host galaxies³, but unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species^{4,5}, whose decay should result in a faint transient, known as a 'kilonova', in the days following the burst⁶⁻⁸. Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe^{5,9}.

compac nal acco wave in essentia constra evidenc stantial regions makes a γ-ray b massive Swift sa

kilonova = r-process nova!

itationalarts is an ts and to ever, the circumaxies, or n, which duration ort-lived NASA's typically

netic sig-

Tanvir+2013, Nature, Aug. 29

ejecta masses from r-process novae

Hotokezaka+Tanaka...+Wanajo 2013; NS+NS models

- late-time excess NIR flux requires an additional component (most likely an r-process nova)
- the excess NIR indicates the NS-NS ejecta with $M_{\rm ej} \sim 0.02 \ M_{\odot}$
- additional late-time red transients in SGRBs will constrain the NS-NS ejecta masses

event rate from gravitational waves

GW signal can be spatially resolved only $\sim 100 \text{ deg}^2$ by KAGRA/a.LIGO/a.Virgo (from 2017)

- → EM counterparts are needed
- SGRBs chances are limited due to narrow beaming
- r-process novae (kilonovae) detectable (by, e.g., Subaru/HSC) from all directions!

what is a smoking gun of the r-process?

can we see r-abundances in the spectra?

❖ almost featureless because of too many bound-bound lines and Doppler shifts (v/c ~ 0.1-0.3)

15000 ❖ identification of red,
featureless spectral
shape can be an
unambiguous evidence
of an r-process

gold (r-process elements) was made in neutron star debris...

www.cartier.jp