Synchronizing Biological Oscillators with Active Movement

Koichiro Uriu

Interdisciplinary Theoretical Biology Team
Theoretical Biology Laboratory, RIKEN

Topic

Synchronization of mobile, locally coupled oscillators

How the mobility of oscillators changes synchronization dynamics?

Formation of a segmental body

cell diameter $\sim 10 \mu m$ segment size $\sim 50 \mu m$

Segmentation occurs rhythmically

Schröter et al. 2008 Dev. Dyn.

Synchronized protein oscillation

Protein concentration oscillates inside cells

Oscillation is synchronized across a population of cells

Oates et al. 2009 Nat. Rev. Genet.

Locally coupled Biological oscillators

Sustained oscillation by negative feedback

Nearest neighbor coupling via membrane proteins

Cell movement in the tissue

white dot: cell nucleus

Movement causes the exchange of neighboring oscillators

Question

How does movement affect synchronization?

Cell signaling and movement are common in Biology

signaling

cell movement

Understanding this Interplay would be fundamental

Movement as the exchange of locations

Random walk of oscillators

Regulation of protein concentration

her 1:
$$\frac{dm_{h1}^{(j)}(t)}{dt} = k \frac{1 + \overline{p}_{D}^{(j)}(t - T_{h1})/\overline{p}_{0D}}{1 + \overline{p}_{D}^{(j)}(t - T_{h1})/\overline{p}_{0D} + \left(p_{H1}^{(j)}(t - T_{h1})/p_{0H}\right)\left(p_{H7}^{(j)}(t - T_{h1})/p_{0H}\right)} - c_{h1}m_{h1}^{(j)}(t)$$

her 7:
$$\frac{dm_{h7}^{(j)}(t)}{dt} = k \frac{1 + \overline{p}_{D}^{(j)}(t - T_{h7})/\overline{p}_{0D}}{1 + \overline{p}_{D}^{(j)}(t - T_{h7})/\overline{p}_{0D} + \left(p_{H1}^{(j)}(t - T_{h7})/p_{0H}\right)\left(p_{H7}^{(j)}(t - T_{h7})/p_{0H}\right)} - c_{h7}m_{h7}^{(j)}(t)$$

delta:
$$\frac{dm_d^{(j)}(t)}{dt} = \frac{k}{1 + \left(p_{H1}^{(j)}(t - T_d)/p_{0H}\right)\left(p_{H7}^{(j)}(t - T_d)/p_{0H}\right)} - c_d m_d^{(j)}(t)$$

HER 1:
$$\frac{dp_{H1}^{(j)}(t)}{dt} = am_{h1}^{(j)}(t - T_{H1}) - bp_{H1}^{(j)}(t)$$

HER 7:
$$\frac{dp_{H7}^{(j)}(t)}{dt} = am_{h7}^{(j)}(t - T_{H7}) - bp_{H7}^{(j)}(t)$$

DELTA:
$$\frac{dp_{D}^{(j)}(t)}{dt} = am_{d}^{(j)}(t - T_{D}) - bp_{D}^{(j)}(t)$$

cellular oscillators + coupling

Details of equations are not important for the rest of my talk.

Lewis, 2003 Curr. Biol.

Limit cycle

Numerical simulation for N = 1 (uncoupled cell)

What happens when we couple many (but finite) of these oscillators in the presence of movement?

Simulations

withOUT movement

with movement

Movement enhances global synchronization

Phase correlation between two oscillators

nonmobile mobile higher local correlation, shorter lengthscale lower local correlation, longer lengthscale

Interaction range

Mobility effectively extends interaction range

Can we write the interaction range?

Identical phase oscillators on a 1D chain

nearest neighbor coupling

Oscillators always reach complete synchronization.

How mobility changes transient dynamics?

Mobility of oscillators

[waiting time dist.] = $\lambda e^{-\lambda t}$

 λ : moving rate

average waiting time = $1 / \lambda$

λ diffusion constant of oscillators

two timescales

phase dynamics $(1/\kappa)$ movement $(1/\lambda)$

Synchronization time T_c

$$T_c \approx \frac{N^2}{\pi^2 \kappa} \frac{1}{1 + \lambda/\kappa}$$

smaller T_c : faster attainment of synchronization

N total number of oscillators

 κ coupling strength

 λ moving rate

(dependence on λ with fixed κ)

symbols: simulations

lines: equation for T_c

Uriu et al. 2013 Phys. Rev. E

Calculation of an effective interaction range

 $T_c(\lambda/\kappa)$ mobile + nearest neighbor coupling

 $T_c(r)$ nonmobile + long range coupling

Solve $T_c(r) = T_c(\lambda/\kappa)$ with respect to r

Interaction range extended by mobility

Effective interaction range r_e

$$r_{e}$$
 r_{e} r_{e} r_{e} $r_{e} \approx \frac{-3 + 7\sqrt{1 + \lambda/\kappa}}{4}$ when $\lambda/\kappa >> 1$ $r_{e} \propto \sqrt{\lambda/\kappa}$ r_{e} $r_{e} \propto \sqrt{\lambda/\kappa}$

Root mean squared distance in time $1/\kappa$ with the diffusion constant λ

Collective cell movement in the tissue

Positive correlation of direction of motion among cells

velocity correlation length 2~ 10 cell diameters

Lawton et al. 2013 Development

How correlated cell movement affects synchronization of coupled oscillators?

Is it better than random movement?

Simulations

spatial velocity correlation

uncorrelated short-range long-range

polygons : cells

color: phase of oscillation

Quickest sync. with a short-range velocity correlation

Uriu & Morelli 2014 Biophys. J

Optimal velocity correlation

Velocity correlation length of 2~3 cell diameters is optimal for synchronization of oscillators.

Summary

- Locally coupled oscillators can attain high local correlations, but these local correlations prevent global sync.
- Mobility of oscillators disturbs local sync., but this is good for global sync.
- Effective interaction range extends with the square root of mobility.

- A short-range velocity correlation is optimal.
- The optimal correlation length in simulations is close to the one observed in fish.

