Probing the Earliest Stage of Our Universe

Kavli IPMU – RIKEN iTHES – Osaka TSRP Symposium "Frontiers of Theoretical Science – MATTER, LIFE, and COSMOS"

November 6, 2014

Ryo Namba Kavli IPMU

Hot Big Bang Cosmology

> Essentially correct description of the thermal history of the universe

CMB = Cosmic Microwave Background

discovered by Penzias & Wilson (1965)

Planck/COBE collaboration

- ➤ What remains after foreground subtraction (stars, galaxies, etc)
- \triangleright Photon (black-body) temperature: $T \simeq 2.73K$
- > Small fluctuations: $\frac{\delta T}{T} \sim 10^{-5}$

Puzzles in Hot BB cosmology

1 Horizon (homogeneity) problem

- Current observable universe
 - ≈ 10⁵ causally disconnected regions at recombination
- 2 Flatness problem
 - Very tiny spatial curvature

- 3 Unwanted relics problem
 - ❖ ~One monopole per nucleon
- 4 Seeds of inhomogeneity
 - CMB fluctuations, large-scale structure

= (quasi-)exponential expansion at the earliest stage of the universe

Inflation solves the puzzles

> Causally connected scales are stretched during inflation to a size larger than the horizon of the current universe

- Spatial curvature & topological defects are diluted away by a rapid expansion
 - solves flatness & unwanted relics problem

Introduce a "field" (encodes value(s) at each point)

- ❖ Needs to end inflation
- lacktriangledown Only need a scalar field $oldsymbol{arphi}$ (encodes one value at each point in spacetime) $V(oldsymbol{arphi})$
- ightharpoonup is the *clock*
- \clubsuit Inflation = slow roll of φ

Inflaton fluctuates around its spatial average $\langle \varphi \rangle = \phi(t)$

- **E.g.** quantum fluctuations
- **Expansion** stretches microscopic fluc. to macroscopic
- Seeds of small inhomogeneities
 - > CMB fluctuations, large-scale structure of the universe

Statistical nature of inhomogeneities **correlation functions**

n-point correlation:
$$\langle \delta \varphi(\vec{x}_1) \delta \varphi(\vec{x}_2) \cdots \delta \varphi(\vec{x}_n) \rangle$$

Statistical average

Qualitative features of inhomogeneities are related to spacetime symmetries during inflation (at least to some extent)

Flat inflaton potential $V(\varphi)$ (approx. shift symmetry $\varphi \rightarrow \varphi + const.$)

- Small interactions = spectrum is almost Gaussian
- \succ Observation: deviation from Gaussian $f_{NL}^{primordial} \sim 0$

Planck 2013

 \succ Statistical info. is encoded mostly in 2-point correlation $\langle \delta \varphi(\vec{x}_1) \delta \varphi(\vec{x}_2) \rangle$

Homogeneity = symmetry under spatial translation

Isotropy = symmetry under spatial rotation

- ightharpoonup Power spectrum only takes $P(\vec{k}) = P(|\vec{k}|)$
- ➤ Deviation often parameterized as $P(\vec{k}) = P_{iso}(|\vec{k}|) \left[1 + g_*(\hat{n} \cdot \hat{k})^2\right]$
- ➤ Observation: $g_* = 0.002 \pm 0.016$

Kim & Komatsu 2013

Almost exponential expansion = quasi de Sitter universe

- \succ Almost scale-invariant spectrum: $P(|\overrightarrow{k}|) \propto k^{n_S-1} \sim {
 m const.}$
- > Observation: $n_s = 0.9603 \pm 0.0073$

Planck 2013

Predictions in a good agreement with data!

Moreover...inflation predicts gravitational waves (GW)

- GW = propagating "spacetime fluctuations"
- Direct measure of the energy scale of inflation

BICEP2 collaboration announced B-mode polarization in CMB

- **❖** If primordial, B-mode polarization of CMB is a direct measure of gravitational waves
- ❖ If discovered, it provides a strong support for inflation + other exciting implications
- ❖ Not yet clear whether the BICEP2 result is of primordial origin
 - May be significantly contaminated by polarized, galactic dust
 - Planck+BICEP2 will release their combined polarization data very soon

Era of Precision cosmology

How can we test the theory of inflation or even further, the physics of the universe at its earliest stage?

One unexplored ground is parity violation during inflation

- > Odd in spatial inversion
- > Scalar (inflaton) perturbation is insensitive
- ➤ Can be encoded in tensor perturbation¹ (gravitational waves)!

Gluscevic & Kamionkowski 2010

One way to realize parity violation during inflation

- ightharpoonup Introduce interaction between ϕ and electromagnetic field
- $\mathcal{L}_{int} \sim \varphi \; F_{\mu\nu} \; \tilde{F}^{\mu\nu}$

- Compatible with the shift symmetry
- > Parity violating interaction induces helical EM field
 - Helical EM field sources helical GW

 Anber & Sorbo 2010, Barnaby, Peloso & RN 2011

\clubsuit If φ is inflaton, GW signals are too small at CMB scales

- Due to strong bounds from scalar perturbations
- Potentially detectable at terrestrial GW detectors (LIGO, VIRGO, KAGRA etc) Barnaby, Pajer & Peloso 2012

Peloso 2012

Crowder et al. 2012

-0.5

E_{CMB}=2.21

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-

- If Ψ is a non-inflaton field, it may be possible to produce helical GW of sufficient strength
 Barnaby et al. 2012, Cook & Sorbo 2013 Mukohyama, RN, Peloso & Shiu 2014
- \clubsuit Other signals primordial \vec{B} field, anomaly...

Outlook & prospects

- Inflation complements the Hot BB cosmology
 - > Solves horizon/flatness/unwanted relic problems
- Inflation seeds small inhomogeneities
 - > CMB fluctuations, large-scale structure
- Prediction of gravitational waves
 - > Testing grounds of the primordial universe
- Understanding inflation is to study ultra-high energy
 - Symmetry structure in high energy?
- Other features/anomalies in CMB?