EFFECT OF MERGERS ON THE SIZE EVOLUTION OF EARLY-TYPE GALAXIES

CARLO NIPOTI

BOLOGNA UNIVERSITY

Getting a Grip on Galaxy Girths, Tokyo, February 2015

NGC 474 (Credit: Duc Atlas3D)

Dry and wet galaxy mergers

- ightarrow Dry = dissipationless, gas-poor, no star formation
- ightarrow Wet = dissipative, gas-rich, star formation
- ightarrow Mainly dry mergers for early-type galaxies (ETGs)

- ightarrow Virial theorem + energy conservation + parabolic
- ightarrow Galaxy masses: $M_2 \leq M_1$
- $ightarrow M_2 = M_1 \implies R \propto M$, $\sigma \propto const$
- $ightarrow M_2 \ll M_1 \implies R \propto M^2$, $\sigma \propto M^{-1/2}$
- \rightarrow Effect is stronger for minor mergers

(Hausman & Ostriker 1978; Ciotti & van Albada 2001; Bezanson et al. 2009; Naab et al. 2009)

Dry mergers: role of mass ratio (analytic)

(Nipoti et al. 2012)

ightarrow For mass ratio $\xi = M_2/M_1$: $R \propto M^{\alpha_R(\xi,\beta_R)}$, $\sigma \propto M^{\alpha_\sigma(\xi,\beta_R)}$ $ightarrow \beta_R \approx 0.6$: slope of observed M_* - $R_{
m e}$ relation ($R_{
m e} \propto M_*^{\beta_R}$)

Dry-merger simulations: R and σ

- ightarrow Parabolic orbits
- ightarrow Mainly major mergers
- ightarrow Deviate from scaling laws

Dry-merger simulations: R and σ

(Nipoti et al. 2009, 2012)

- \rightarrow Realistic galaxies (stars+halos)
- ightarrow Realistic orbits
- ightarrow Minor and major
- ightarrow Deviate from scaling laws

Dry-merging & fundamental plane: $c_{\rm e2} = 2 G M_{\rm e2}^p / R_{\rm e} \sigma_{\rm e2}^2$

 \rightarrow FP more robust against dry merging

(Nipoti et al. 2009, 2012)

Effect of merger orbital parameters

(Nipoti et al. 2012)

- ightarrow e: eccentricity
- ightarrow $r_{
 m peri}$: pericentric radius
- ightarrow Typically small effect
- ightarrow Larger R for head-on

Effect of dissipation (wet mergers): analytic

(Ciotti et al. 2007)

- $ightarrow \eta$: fraction of gas converted into stars
- \rightarrow Size smaller for wet mergers
- ightarrow Velocity dispersion higher for wet mergers

Effect of dissipation (wet mergers simulations)

(Dekel & Cox 2006)

- \rightarrow Hydro + N-body
- \rightarrow Size smaller for wet mergers
- \rightarrow Velocity dispersion higher for wet mergers

Cosmological evolution: halo size

LCDM DM-only simulation (Posti, Nipoti, Stiavelli & Ciotti 2014)

Cosmological evolution: halo velocity dispersion

LCDM DM-only simulation (Posti, Nipoti, Stiavelli & Ciotti 2014)

Cosmological evolution: galaxy R and σ

Two simple (complementary) models:

▶ Nipoti et al. (2012): → Merger rate from Millenium → R_{e} and σ from dry merger model

Posti et al. (2014):

ightarrow Cosmological simulation

$$ightarrow R_{
m e} \propto r_{
m halo}$$

 $ightarrow M_* = f(M_{
m halo},z)$ from abundance matching

Size evolution of ETGs: LCDM vs. observations

Nipoti et al (2012)

Cimatti, Nipoti & Cassata (2012)

ightarrow Observed pprox predicted at $z \lesssim 2$

ightarrow Observed evolution stronger than predicted by LCDM at $z\gtrsim 2$

σ evolution of ETGs: LCDM vs. observations

ightarrow LCDM predictions consistent with current observations

ETG size evolution & environment

- ightarrow COSMOS groups at z pprox 0.6 (George+11)
- ightarrow EDisCS clusters at $z \approx 0.6$ (White+05)
- ightarrow WINGS clusters at $z \approx 0$ (Fasano+06)

- ightarrow Galaxies evolve: $M_*(z)$, $R_{
 m e}(z)$, $\sigma(z)$
- ightarrow Environment evolves: $M_{
 m halo}(z)$ (group ightarrow cluster)

$R_{ m e}$ - σ - M_* : centrals vs. satellites at z pprox 0

Vulcani et al. (2014)

 \rightarrow Observed clusters at $z\approx 0$ (WINGS) \rightarrow Large offset between centrals and satellites

see also Lauer+07, Bernardi 09, Hyde & Bernardi 09, Valentinuzzi+10

$R_{ m e}$ - σ - M_* : centrals vs. satellites at $z \approx 0.6$

Vulcani et al. (2014)

ightarrow Observed groups at zpprox 0.6 (COSMOS)

ightarrow No (or small) offset between centrals and satellites

Modeling evolution of group ETGs: $R_{\rm e}$ - M_{*}

- ightarrow Predicted zpprox 0 offset smaller than observed in WINGS
- \rightarrow Initial conditions: COSMOS data (Vulcani+14)
- ightarrow Evolution of centrals: LCDM+dry mergers (Nipoti+12)
- ightarrow No evolution of satellites

Modeling evolution of group ETGs: $\sigma - M_*$

- ightarrow Predicted zpprox 0 offset smaller than observed in WINGS
- \rightarrow Initial conditions: COSMOS data (Vulcani+14)
- \rightarrow Evolution of centrals: LCDM+dry mergers (Nipoti+12)
- ightarrow No evolution of satellites

Modeling evolution of group ETGs: $R_{ m e}$ - σ

- ightarrow Predicted zpprox 0 offset smaller than observed in WINGS
- \rightarrow Initial conditions: COSMOS data (Vulcani+14)
- \rightarrow Evolution of centrals: LCDM+dry mergers (Nipoti+12)
- ightarrow No evolution of satellites

Evolution of halos: hosts vs. subhalos

- ightarrow No big difference between hosts and subhalos
- ightarrow Trend: hosts evolve more than subhalos
- ightarrow Dependence on halo mass?

Total density slope γ' ($ho_{
m tot} \propto r^{-\gamma'}$)

SLACS ETGs - weak lensing (Gavazzi et al. 2007)

Dry mergers make γ' decrease

Nipoti at al. (2009), Sonnenfeld, Nipoti & Treu (2014)

Evolution of γ' : dry mergers vs. observations

- ightarrow Model: Nipoti et al. (2012) + γ' (N-body)
- \rightarrow Observations: SLACS+SL2S lenses (Sonnenfeld et al. 2013)
- ightarrow Evolution of γ' not explained by purely dry mergers

Evolution of γ' : wet (damp) mergers vs. observations

- \rightarrow Toy-model dissipation
- ightarrow Small amount of dissipation helps reproduce $\gamma'(z)$

Dry and wet mergers vs. observations: $R_{\rm e}(z)$

Sonnenfeld, Nipoti & Treu (2014)

Conclusions

- ightarrow LCDM consistent with $R_{
 m e}(z)$ and $\sigma(z)$ of ETGs at $z\lesssim 2$
- ightarrow Observed $R_{
 m e}(z)$ stronger than predicted at $z\gtrsim 2$
- ightarrow Group centrals evolve much faster than satellites
- ightarrow Evolution of γ' not explained by purely dry mergers
- ightarrow "Damp" mergers: promising at $z \lesssim 1$

Questions

- \rightarrow How do we explain the very strong evolution of central galaxies in groups and clusters?
- \rightarrow Is redshift evolution of Sersic index observed/observable?
- \rightarrow Size evolution of ETGs: how much individual evolution, how much progenitor bias?