Mass-density and quenching: a cautionary story of cause and effect and the importance of progenitor effects

(Mostly) On Behalf of Simon Lilly

Lilly & Carollo 2015, soon on astroph

Stellar Population Ages of Compact & Large M* Q-ETGs

The average size of quenched galaxies scales as (1+z)-1, i.e., same scaling of virial radius of DM halos (of a given mass).

- Compact Q-ETGs become systematically redder towards later epochs
- U–V color difference consistent with a passive evolution of their stellar populations
- Stable population that does not appreciably evolve in size
- Larger Q-ETGs have average rest-frame U-V colors bluer than compact Q-ETGs
- At any z<1, larger Q-ETGs younger than compact Q-ETGs</p>

The Star-Forming Main Sequence and the Quenched Populations

Apparent importance of stellar density in quenching

Apparent importance of stellar density in quenching

Stellar density effects

Sizes of star-forming "disks" at a given mass scale roughly as (1+z)⁻¹

Addition of new stars

Galaxies form stars at a rate given by their existing mass and the Main Sequence sSFR(m,z):

$$sSFR_{MS} = 0.07 \left(\frac{m}{3 \times 10^{10}}\right) (1+z)^2 \text{ Gyr}^{-1}$$

New mass is added to galaxy in an exponential disk with scale length given by:

$$h_{SF} = 5 \left(\frac{m}{3 \times 10^{10}}\right)^{1/3} (1+z)^{-1} \text{ kpc}$$

Both $sSFR_{MS}$ and h_{MS} have a small gaussian scatter added to produce some dispersion in the population

Quenching

Galaxies then quench probabilistically according to the Peng et al (2010) prescription which may be written as

$$Pdm = \frac{dm}{M^*}$$

$$P_{sat}dm = \varepsilon_{sat} \frac{dm}{m} (1+z)^{-1}$$

Note: Nothing to do with surface mass density!

Size of star-forming in light: $(1+z)^{-1}$ Size of star-forming in mass: $(1+z)^{-0.85}$ Size of cumulative passive population (i.e. from "progenitor bias" alone) $(1+z)^{-0.6}$

Passive galaxies are typically factor of two smaller than star-forming ones.

Due to both fading of disks (F) and "progenitor bias" (P)

Progenitor Bias (P): Valentinuzzi et al (2010), Carollo et al (2013), Poggianti et al (2013), +++

Carollo et al (2014), astroph 1402.1172 for Disk Fading (F)

Galaxies have central concentrations above the disks (="bulges")

sSFR increases from inside-out (see e.g. Tacchella et al 2015)

Both arise from the stars that formed earlier when the galaxy was smaller

Model outputs

The quenching stellar density thresholds follow from size evolution...

... and the apparent role of stellar density arises naturally

i.e. a consequence of

(a) parallel but displaced loci in R_e(m) for SF and quenched due to fading and progenitor effects
(b) different relative numbers along these loci due to φ(m) from mass- and environment quenching A simple model in which added stellar mass scales as $m^{0.3}$ and $(1+z)^{-1}$, Plus Peng et al (2010) quenching laws, naturally produces:

- passive galaxies that are half the size of star-forming ones.
 50% of this effect is due to fading and 50% due to progenitor bias
- the apparent "ceiling" in surface mass density above which growing galaxies quench
- the apparent inside-out growth of passive galaxies with redshift (in that the mass density within 1 kpc changes less than that within Re)
- the redshift evolution of the surface mass density threshold between passive and SF galaxies as in Franx et al (2008)

- the variation of quenched fraction with surface mass density and mass as in Omand et al (2014) for both centrals and satellites.