University of Hertfordshire

MEGAMORPH -Measuring the physical properties of galaxies in modern multi-wavelength surveys

Boris Häußler

Universities of Oxford & Hertfordshire

Steven Bamford & Rebecca Kennedy (Nottingham), Benedetta Vulcani (IPMU), Marina Vika (Athens), Alex Rojas (CMU, Qatar) and others (e.g. GAMA team!)

The University of

Galactic Girths, Kashiwa City, February 3rd 2015

Today's data: multiple bands

Galactic Girths, Kashiwa City, February ord 201

Results dependent on choice of band

Multi-band data hosts more information

multi-band data = more information discriminatory power

Colour is valuable information

simulated monochromatic observations

Galactic Girths, Kashiwa City, February 3rd 2015

Colour is valuable information

simulated colour observations (degraded HST images)

MegaMorph

- Collaboration between astronomers, statisticians and computer scientists
- Funded by Qatar National Research Fund (QNRF)
- Address the issues with current software [Done, this talk]
- Implement multi-band bulge-disk decomposition [Done, Talk Vika], even in a spectral sense on IFU data [in progress, Johnston, in prep]
- Accurate model selection (single Sérsic or B/D,...) [In progress]
- Ensure fast enough to process large surveys [Somewhat in progress]
- Implement non-parametric fitting [please ask, Talk Bamford?]
- Implement MCMC minimization [please ask]

MegaMorph data - Redshifted

- ~165 NGC galaxies
- SDSS *ugriz* imaging
- Artificially redshifted using:

<u>Full and</u> <u>Efficient Redshifting</u> of <u>Ensembles of</u> <u>Nearby</u> <u>Galaxy</u> <u>Images</u>

Barden, Jahnke & Häußler, 2008, ApJS, 175, 105

residual model data z = 0.01z = 0.03z = 0.05z = 0.07z = 0.09

MegaMorph data - Simulated

simulated data

real data

In same manner as Häußler et al. 2007

MegaMorph data - GAMA

- Redshift survey & multiwavelength database
- Registered mosaics
 - 150 sq. deg
 - SDSS ugriz
 - + UKIDSS YJHK
 - →VST KIDS + VISTA VIKING

MegaMorph Software

Galapagos

by M. Barden, B. Häußler, et al. (C-version by A. Hiemer)

GALFIT by C.Y

by C.Y.Peng, et al.

by E.Bertin

MultiNest by F. Feroz & M. Hobson

Galapagos

- Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from Sextractor (Barden, Häußler et al., 2012):
 - Run Sextractor to detect objects, mosaik
 - Cut postage stamps for each object
 - Decide on automated basis on neighbours:
 - Deblending or masking?
 - Run neighbour-sensitive sky estimation
 - Set up GALFIT start file
 - Run GALFIT
 - Write all results to one big catalogue
 - Used for GEMS, STAGES, CANDELS (and other)
 - ONE BAND!
 - (also exists as C-code now that runs on super-computers, by Andreas Hiemer, Innsbruck)

GALFIT adaptations

- GALFIT adaptations:
 - Uses multi-wavelength data
 - Non-parametric component
 - Can use different minimization algorithms (LM, Multinest-MCMC)
 - Each standard GALFIT parameter replaced by a polynomial function of wavelength (Chebyshev polynomials)

$$f(\lambda) = \sum_{i=0}^{m} c_i \mathcal{T}_i(\lambda)$$

$$\begin{split} I(r) &= I_e exp(-b_n [(r/r_e)^{1/n} - 1] \\ &\searrow \\ I_e(\lambda) & r_e(\lambda) & n(\lambda) \end{split}$$

Bamford, in prep

Easy and backwards compatible user interface

Galactic Girths, Kashiwa City, February 3rd 2015

Parameters more stable

Galactic Girths, Kashiwa City, Fel

Parameters more accurate

Parameters more accurate

Galactic Girths, Kashiwa City, February 3rd 2015

Science sanity checks

Science sanity checks

Galactic G

Science sanity checks

Possible contamination

Possible contamination

Code & Test-Summary

- Multi-wavelengths fitting:
 - slightly improves the accuracy for recovering mags and colours
 - increases fitting reliability for sizes and Sérsic indices
 - increases the sample size that can be used for science!!
 - allows higher quality fits out to higher redshifts
- Public tool(s) for everyone to use (public on website and github!) (just google 'MegaMorph' and find our G+ community) (ignore the Morphsuits)

Usual classifications (u-r, n) don't work

Vulcani+13

Sérsic index changes with wavelength

Un-mixing populations

Vulcani+13

Defining 72 as n ratios

possibly some dust effect

Galactic Girths, Kashiwa City, February 3rd 2015

Is 7/2 usable to classify galaxies?

Radius re changes with

Un-mixing populations

- n>2.5 shows steeper decrease
- red n>2.5: constant n, but re decreases nearly by factor of 2!

Defining Ras re ratios

n<2.5 indistiguishable

Galactic Girths, Kashiwa City, February 3rd 2015

NVS. R

- low-n galaxies show constant R, varying N
- high-n galaxies show constant N, varying R
- -> classification without using n or colour itself?
- These results are independent of redshift (Kennedy, in prep)

\mathcal{N} and \mathcal{R} 'agree' with visual classification

Galactic Girths, Kashiwa City, February 3rd 2015

Kennedy in prep

Dust opacity and inclination cause scatter

Galactic Girths, Kashiwa City, February 3rd 2015

Dust effect from Pastrav 2013, Kennedy in prep

Possible interpretation?

Galactic Girths, Kashiwa City, February 3rd 2015

Vulcani+13

Possible interpretation?

• $\mathcal{N}=n_H/n_g$ and $\mathcal{R}=r_H/r_g$ describe colour gradient!

Vulcani+13

Galactic Girths, Kashiwa City, February 3r

Colour Gradients are important

Summary

- Don't waste Photons! They contain valuable information!
- MegaMorph improves fitting accuracy! accurate measurements, higher redshift, bigger samples, <u>internal colour</u> <u>gradients</u>, separate individual galaxy components
- Change in Sérsic index with wavelength reflects galaxy structure (robust to z = 0.3, Kennedy, in prep.)
- MegaMorph can help us identify key observables in the evolution of galaxies
- More cool stuff to come! E.g. B/D papers and using this technique on IFU data in order to get the spectra of the individual components (Johnston, in prep.)
- Code released on github and websites. Please ask and/or use it! And adapt it!
- For Bulge/Disk decompositions, wait for Marina Vikas talk.
- I don't have any question. Do you?