

MEGAMORPH

Investigating galaxy structure with multi-wavelength bulge-disc decompositions

Marina Vika*

National Observatory of Athens

Steven Bamford, Boris Häußler, Rebecca Kennedy

*mvika@asto.nao.gr

Why Bulge-Disk decomposition?

The bimodality of several galaxy properties, colour–magnitude, colour–concentration, and colour–morphology reflects their internal structure, red galaxies have a dominant bulge component while blue galaxies have a dominant disk component.

Strateva et al 2001, Baldry et al. 2004, Driver et al 2006, Drory & Fisher 2007, Bamford et al. 2009

Bulges

- old stellar populations
- low star formation rates
- pressure-dominated systems
- but we also have pseudo-bulges

Disks

- younger stellar populations
- higher star formation rates
- rotationally supported systems

Various formation and evolutionary mechanisms have been proposed to explain the variety of properties observed in these two components: e.g. bulges formed by hierarchical mergers, their disks grow afterward from inside-out processes while pseudo-bulges form from secular processes inside discs.

Quantitative measurements of bulge & disk properties

	combined model		bulge 13.2	disk 12.9
.			18.4 3.3	108.7
	IC_0724	Sa		
ø	combined model		bulge 10.9 45.1 4	disk 11.5 193.8
	NGC_3898	SA(s)ab		
	combined model		bulge 14.7 33.3 0.7	disk 11.7 207.2
	NGC_2541	SA(s)cd		
	combined model		bulge 16.5 13	disk 13.1 77.1
114		•	0.5	
an a				

	combined model		bulge 10.9 45.1 4	disk 11.5 193.8
	NGC_3898	SA(s)ab		
	combined model		bulge 13.2 18.4 3.3	disk 12.9 108.7
	Single Band			
	Dana		bulge 14.7	disk 11.7
			33.3 0.7	207.2
	NGC_2541	SA(s)cd		
	combined model		bulge 16.5 13	disk 13.1 77.1
			- 0.5	
	NGC_3246	SABdm		

Multi wavelength (u,g,r,i,z) images covering more than a quarter (10,000 square degrees) of the sky containing more than 930,000 galaxies.

http://www.sdss.org/

Abazajian et al 2009

GAMA (Galaxy And Mass Assembly)

MEGAMORPH

MULTI-WAVELENGTH MEASUREMENT OF GALAXY STRUCTURE

MegaMorph aims to improve our ability to separate galaxy components, particularly in large surveys.

MEGAMORPH

- Multi-band fitting (Bamford et al in prep. A)
- Non parametric components (Bamford et al in prep. B)
- Explored parameter space (MultiNest) (Bamford et al in prep. A)
- Single Sérsic modelling (Vika et al 2013, 2015, Häußler 2013)
- Bulge-disk decomposition (Vika et al 2014, Häußler et al in prep., Kennedy et al B)
- Wavelength dependent sizes and profiles of galaxies (Vulcani et al 2014,

Kennedy et al in prep.A)

Multi-Wavelength Sample

I 64 Galaxies u,g,r,i,z bands (SDSS)

- Mixed morphology
- Have been perviously studied in detail
- Not a complete sample

Vika et al 2013

Artificially redshifted Sample

NGC 4274

We artificially redshift images using FERENGI

Fit polynomials instead of values

m

Chebyshev polynomials
$$f(\lambda) = \sum_{i=0}^{m} c_i T_i(\lambda)$$

$$\begin{split} I(r) &= I_e \, \exp\left(-b_n \left[(r/r_e)^{1/n} - 1) \right] \right) & \text{Sérsic function} \\ & & \\ I_e(\lambda) & r_e(\lambda) & n(\lambda) \end{split}$$

GALAPAGOS ----- GALAPAGOS-2

Effective radius of bulge(r_{e,b}) values for 6 galaxies

Bulge Sérsic index (n_b) values for the same galaxies.

Vika et al 2014

Vika et al 2014

Bulge-to-total flux ratio (Original images)

Bulge-to-total flux ratio (Original & Redshifted images)

Z

Bulge-Disk colour difference (Original images)

Average: $(g-i)_b - (g-i)_d = 0.3 \pm 0.07$ in agreement with previous studies

Vika et al 2014

Bulge-Disk colour difference (Original & Redshifted images)

Vika et al 2014

Effective Radius (Original images)

Effective Radius (Original & Redshifted images)

Ζ

Bulge Sérsic index (Original images)

 n_{b}

Bulge Sérsic index (Original & Redshifted images)

first degree polynomial

Bulge $(r_{b,z}/r_{b,g})$

 $r_{b,z}/r_{b,g}$

Disk $(r_{d,z}/r_{d,g})$

Disk Effective Radius

MEGAMORPH

APPLICATION ON MULTI-WAVELENGTH SURVEYS

Multi-Wavelength Sample - Real Galaxies

20,000 Galaxies u,g,r,i,z,Y,J,H,K bands (GAMA)

Häussler et al 2013

Multi-Wavelength Sample - Simulated Galaxies

Methodology is described in Häußler et al. 2007

Bulge and Disk Magnitude

Bulge and Disk Effective Radius

Häussler et al in prep.

Pb,/Pb,sim

Bulge Sérsic Index

SEDs for real data

Bulge-Disk colour difference

Kennedy et al in prep.

Bulge-Disk colour difference

Kennedy et al in prep.

Colour vs Inclination

Kennedy et al in prep.

Bulge & Disk Size - Magnitude Relation

Bulge & Disk Decomposition of IFU data

Johnston et al in prep.

Summary

- In this project we have developed a method that allows us to create wavelengthdependent models of the bulge and disk component. Our new multi-wavelength method expands and improves over single-band fitting for the extraction of structural parameters.
- We can recover the SED of the bulge and the disk.
- Disks in red galaxies can be redder than bulges in blue galaxies.
- Bulge colours appear unaffected by disc inclination
- A number of key conceptual **developments** have been made and implemented in well established software packages (GALFITM, GALAPAGOS-2). You can download the software from: **www.nottingham.ac.uk/astronomy/megamorph/**
 - What is the colour (or age) of each component and how does it change depending on the overall mass and environment of the galaxy?
 - Is there any size change with wavelength for bulges and disks and what does it tell us?