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Frustration
in Quantum Many-Body Systems

* Antiferromagetic interaction 1 FAY
among three splns 1,2,3. |
H=H,+ Hy + Hj, A, A, X

* No way of making all terms
simultaneously minimized. > & 84
— frustration. \7 ﬁ23 ,

* More generally, H is frustration free if

» There exists a decomposition H = Ziﬁi with following properties.

> ﬁi’s are finite ranged. I-All-’s do not have to commute with each other.

» Ground state | D) of H minimizes all I—AIZ- simultaneously.
.e., H;| ®gs) = Egg ;| Pgs) and Egg; =0 is GS energy of H,.
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Goal

e \We want to understand
» General properties and limitations of FF Hamiltonians.

> Which phase can be represented by FF Hamiltonians.

. Frustration free ¢
¥ Frustration free

 \We discuss several conjectures/new results on FF systems.

» If gapless, excitation is quadratic or softer: £z = O( | k — l_c)o %)

> |f gapless, finite size gap is € = O(L ™).

> If gapped, finite size splitting of degeneracy is absent.



Markov Chain Monte Carlo
(MCMC)

Simulation method for classical 2D Ising model (ordered phase)
statistical mechanical systems

-

d L

9
L

Al Al¥] =

Boltzmann weight w(C) = e~£(©)

e.g. Ising model E(C) = — JZ 0;0;
(,))

Master equation

d /

—p(,C) = Z Weor(t, C)

d c'es

Local update rule

W= )W,

Detailed balance condition
WC,C’W(C,) — WC’,CW(C)




Critical Slowing Down

* As the system approaches to a critical point,
the relaxation time 7 becomes longer and longet.

disordered critical ordered b

O >

e At the critical point, the relaxation time 7 o< L* (z : dynamic critical exponent).

1 (0e™0) — (0)?| ~ Ce " with 7 = 1/e.

Dynamic critical exponent z People believe 7 > )

Models
Ising (2D) 2.1667(5) [14]
Ising (3D) 2.0245(15) [15]

Heisenberg (3D)
Three-state Potts (2D)
Four-state Potts (2D)

without a proof.
Obtained smaller 7

2.033(5) [16] e .
2.193(5) [17 by giving up locality or
2.296(5) [18] detailed balance.




L=64  L=128 t =0 L =256

J=0.9J
(disordered phase)
& < L: no L dependence

J=0.99],

(disordered phase)
& > L: clear L dependence




L=64 L=126 +t=0 L=25

J=J.=0.440687---
(critical point)
T L% 7 =2.1667(5)

J=1.1346J.

(ordered phase)
tTx LA z=2

J=2.269J.
(ordered phase)

Tx LA z=2




L=64 L=126 +t=0 L=25

J=J.=0.440687---
(critical point)
T L% 7 =2.1667(5)

Our general results on quantum FF systems
gives the fist proof of

'L Z > 2 in MCMC for classical critical systems.

J=2.269J.
(ordered phase)

Tx LA z=2
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Nambu-Goldstone bosons
In relativistic systems

Suppose the symmetry of the system G is spontaneously broken to H.

Coset space G/H is the space of degenerate ground states.

Nambu-Goldstone bosons are low-energy fluctuations within the coset space.

The number of broken generators Ny = dim(G/H) = dimG — dimH.

The number Nambu-Goldstone bosons Nygg is always given by Nyg.

1 1
Effective Lagrangian £ = Egab(ﬂ)()ﬂﬂaéﬂﬂb 4 e = 5 gab(())aﬂﬂaaﬂﬂb + ...

G/H=S' G/H = §2
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Suppose the symmetry of the system G is spontaneously broken to H.

Coset space G/H is the space of degenerate ground states.

(unchangedl)

Nambu-Goldstone bosons are low-energy fluctuations within the coset space.

The number of broken generators Ny = dim(G/H) = dimG — dimH.

The number Nambu-Goldstone bosons Nygg is sometimes smaller than Ny.

Many exampIeS Examples G/H NG NNGB
: : QCD SU(3) XxSU(3)/SU(3) 8 8
SyStemat|C underStandmg? Antiferromagnet SO(3)/S0(2) 2 2
Ferromagnet SO(3)/S0O(2) 2 l
Ferrimagnet SO(3)/S0(2) 2 1
Kaon (4 = 0) U(2)/u(1) 3 3
Kaon (1 > 0) u2)/u(1) 3 2
BEC (planar) SO(3) xU(1)/U(1) 3 3
BEC (ferro) SO(3) xu(1)/u(1)’ 3 2
Crystal (2+1D) T 2 2
Wigner crystal 2 I
Skyrmion crystal T 2 l




Effective Lagrangian

* Lorentz symmetry (+derivative expansion)

1 1
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Effective Lagrangian

* Lorentz symmetry (+derivative expansion)

1 1
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Effective Lagrangian

Lorentz symmetry (+derivative expansion)

1 1
L = Egab(n)aﬂnaaﬂnb + .= Egab(())aﬂﬂaaﬂﬂb 4 e

Spacial rotation symmetry (+derivative expansion)

1
Z = c ()7 + Eg’ab(ﬂ)ftafrb — Egab(n) Vae -Vl + ..

b - 1 _ ~a-b 1 b
= p T 7"+ Egab(O)ﬂ“ﬂ — Eé’ab(O)Vﬂa -V’ + -

A
Skew matrix p , is related to the broken generators: p ;, = V<[Qa’ Qb])

(0 4 \
-4 0
: m blocks
. 0 4,
Block diagonal form: p = 10 type A 1
type B To o " Erankp
\ 0 0
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1 1
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ﬂzmH, 7'VBG6 are Independent variables.

Dispersion is generically linear: W7 X k.

1
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72~V and 7% ¢ = 1,2,---, m) are canonically conjugate variables.

+ Ng=m= Erankp

HW, T. Brauner, PRD (2011) {
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l

1 . ,_
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Dispersion is generically quadratic: w; k?.



Counting formula

1 1
. TypeA: & = Egab(oyz%b — Eg“”(o) Vrt - Vr

ﬂ2m+1, 7'VBG are Independent variables.

Tomas Brauner

1
=+ Ny = Ngg — 2m = Ngg — Erankp Effective

- o k. Field Theory
| for Spontaneously
. ITypeB: & = pabyzby't“ - Eg“b(o) Vit -Vl + . Broken Symmetry

Dispersion is generically linear: @

72~V and 7% & = 1,2,---, m) are canonically co

> Ng=m= Erankp

@ Springer

Dispersion is generically quadratic: w; k?.

HW, T. Brauner, PRD (2011)
o Ny +2Ng = Npg HW, H. Murayama, PRL (2012) }
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1 L A A
e Mg = Npy+ N = Npg — Erankp, Pab = V<[Qa’ Opl) ,"



Nambu-Goldstone bosons
In nonrelativistic systems

Suppose the symmetry of the system G is spontaneously broken to H.

Coset space G/H is the space of degenerate ground states.

Nambu-Goldstone bosons are low-energy fluctuations within the coset space.

The number of broken generators Ny = dim(G/H) = dimG — dimH.

The number Nambu-Goldstone bosons Nygg is sometimes smaller than Nqp.
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In nonrelativistic systems

Suppose the symmetry of the system G is spontaneously broken to H.

Coset space G/H is the space of degenerate ground states.

Nambu-Goldstone bosons are low-energy fluctuations within the coset space.

The number of broken generators Ny = dim(G/H) = dimG — dimH.

The number Nambu-Goldstone bosons Nygg is sometimes smaller than Nqp.

Many examples Examples G/H { 756~ nngs = (1/2)rankp
: : QCD SU(3) xSU(3)/SU(3) . 8 8 0
Systematic understanding Antiferromagnet S0(3)/S0(2) 2 2 0
achieved! Ferromagnet S0(3)/80(2) 2 l
Ferrimagnet SO(3)/S0(2) 2 l 1
Kaon (4 = 0) u(2)/u(1) 3 3 0
Kaon (1 > 0) Uu2)/u(1) - 3 2 1
BEC (planar) SO(3) xU(1)/U(1) 3 3 0
BEC (ferro) SO(3) xUu(1)/U(1)’ 3 2 1
Crystal (2+1D) T 2 2 0
Wigner crystal - 2 | I
Skyrmion crystal T’ 2 1 1




Nambu-Goldstone bosons
In nonrelativistic systems

e Suppose the symmetry of the system G is

spontaneously broken to H.

e Coset space G/H is the space of degenerate ground states.
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Hohenberg-Mermin-Wagner theorem at 7 > 0

. i . _ Hohenberg (1967),
Hohenberg-Mermin-Wagner (HMW) theorem: Mermin-Wagner (1966)

Continuous symmetries cannot be broken at finite 7in d < 2.

e Nambu-Goldstone (NG) theorem: Nambu (1960), Goldstone (1961)

Spontaneously broken continuous symmetry = Gapless excitations

 Proof of HMW theorem (by contradiction)
1. Suppose a continuous symmetry is broken.
2. NG theorem implies gapless excitations (Nambu-Goldstone bosons).

3. Infrared divergence originating from NG bosons in d < 2 destroys the
order parameter.
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(Also known as Coleman theorem)

Hohenb 1967
e Hohenberg-Mermin-Wagner (HMW) “theorem” at 7" = O: Mer?niﬁ?wzgn(er (19)éa)
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i We are going to discuss counterexamples }— assumed
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1. Suppose a continuous symmetry is broken.
2. NG theorem implies gapless excitations (Nambu-Goldstone bosons).

3. Infrared divergence originating from NG bosons in d,«{z destroys the

order parameter. <
P Another mechanism: d=<1

Spontaneous breaking of
multipole symmetries & generalized symmetries
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Definition of
Spontaneous Symmetry Breaking

Consider spin systems defined on d-dim lattice A. $ 0 $ 0 $ ¢
Suppose Hamiltonian H= Z ﬁ; has an internal continuous symmetry

R . ren
generated by O = Z Q- ie. [H,Q]=0.

reA

Order parameter operator O takes the form O = [iQ, X | with X = Z )A(;;.

reA
Apply a symmetry-breaking field / by ﬁ(h) = H — ho.
| B (O) A
Order parameter: m(h) = B2 for the ground state of H(h).

Spontaneous symmetry breaking< | Iim lim m(h) # 0
h—>+0 V-0



Well-known counterexample to
the 7" = 0 version of HMW theorem

L
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. Heisenberg ferromagnet: H = JZ (SZ-SZ.Jrl + 811 + Sl.Sl._H).
i=1

L
Spin rotation symmetry about z axis generated by O = Z §f
i=1

Order parameter O = Z §t = [iQ, X1 with X = 2 5.



Well-known counterexample to
the 7" = 0 version of HMW theorem

. §Xgx VoY e
Heisenberg ferromagnet: H= JZ < iSip1 TS5, TS +1>
=1

L
Spin rotation symmetry about z axis generated by O = Z 5°.
=1

L
Order parameter O = Z § = [iQ, X1 with X = 2 5.

=1 i=1  lim lim m(h) # 0
A m h—+0 Voo -
0 = Z Y'is also broken. 104 fereeee]
-o- L=4 :
) 0-57 L=6 1 4
G SO(3) H SO(Z) — G/H S & o : 1(” ............................
0.0 1" -e- L=10 ———?—-;
Y 7 _ -®- L=12 1 1,00 poee—e-e-
[H, ©] = 0 = No quantum fluctuations. —0.5 1 -
_1_()_'_,_,_.__‘,_*,_4"”4 ” 7000 002 0.04
The diSperSion for NGB: a)z X k2 (type B) —0.2 —0.1 0.0 0.1 0.2

h



One of new counterexamples at 7' = 0

HW, H. Katsura, J.Y. Lee, PRL (2024)
Inspired by O. Ogunnaike, J. Feldmeier, J.Y. Lee, PRL (2023)

e 5 = 1 XXZ spin chain with four-spin |nteract|on A=1> Heisenberg ferromagnet.
PI = — JSE, + 88+ A )+ —[1 — (1= D)ED?[1 - (1= A, )]
L
. Spin rotation symmetry about z axis generated by Q = Z 52,

=1
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Order parameter O = Z 5§ = [iQ, X1 with X = Z s7.
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One of new counterexamples at 7' = 0

HW, H. Katsura, J.Y. Lee, PRL (2024)
Inspired by O. Ogunnaike, J. Feldmeier, J.Y. Lee, PRL (2023)

s = 1 XXZ spin chain with four-spin mteractlon A = 1 = Heisenberg ferromagnet.

Vo

H; = — J&8,, + 887+ A8 ) +—[1 — (1 =M@ [1 -1 -0 )

L
Spin rotation symmetry about z axis generated by Q = 2 §f
i=1
L
Order parameter O = Z §:=[iQ, X] with X = Z 5.
i=1

=l Jim lim m(h) # 0

m h—+0 V—>oov
0 ‘

No other symmetry in this model. 1.0 - 4 1.'1;..“_”_".1
e T 1*%,
G =SOQ),H=e. - G/H=S' 0594 mws 1o [~V
e IJ:8 : g.i.)..(;.—;;; ................. ; ........
A A 00T -0~ =10 ===$=1  |feT_;
[Ha @] # 0 when A 7& 1. -o- L=12 : 0,045 107
—0.5 -
I
I 10940 :
The dispersion for NGBs: W7 X k? e e B ,,,,,,‘,’,,‘,’.‘,’,.,.‘,’,}.’.,...‘,’..‘.’..‘..,

Can be explained by “frustration-free” nature of the odel” ‘};’ @



Proof of HMW theorem for a finite 1
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via Bogoliubov inequality wvemin-wagner (1966
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Proof of HMW theorem for a finite 1

Hohenberg (1967),

via Bogoliubov inequality wvemin-wagner (1966

- i () — . ik T o O kT
Fourier transformation: (); = Z Qre™ " and X7 = Z X-e™.

reA reA
(0)
L AT © n 2 v "
| o 2T (| 5(0%L X;D) |

1 A\ A\ A\ A\

_ Bl -
= z' FGX+ X)) 2 — z'
k k

1 7/\ A A
—([10;. A1, 031)

O(1) ~ Ck?

d% 2T |m|?
2z)d  Ck2

(1) > [

IR divergenceind <2 = m =0 (i.e., no SSB)



Proof of HMW theorem for 7' = 0
via Bogoliubov inequality  mkadaios

Fourier transformation: (); = Z Q;eik"” and X7 = Z X;elk"’.

reA reA
(0)
1 AT V ]>|2 7 -
NV 1 « 2T |5([i0:, X;
_22<X%Xi+Xin> > —z 1 V,A ,\k f
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Proof of HMW theorem for 7' = 0
via Bogoliubov inequality  mkadaios

Fourier transformation: (); = Z Q;eik'r and X7 = Z X;elk"”.

reA reA
a)z ~ an <_‘@/> —m
Al /i AT 2
1 N 1 2T (lOLX;]) |
— D (GXI+ XX > — ) — Yo
( © V2L (19, HYL O
~ Ck?
{ In o;rSeBxgmﬁle n d= 2. »" W = VK"
is allowe p -
; k 27
nd> 0. 0(1)2‘ 2 m]
d<2-—n

IR divergence ind.<2 = m =0 (i.e., no SSB)



Outline

e Nambu-Goldstone bosons in nonrelativistic systems
HW, H. Murayama, PRL (2012) Editors’ Suggestions

e Spontaneous breaking of U(1) symmetry in 1+1D
HW, H. Katsura, J.Y. Lee, PRL (2024) Editors’ Suggestions

e | ow-energy excitations in frustration-free systems

R. Masaoka, T. Soejima, HW, PRB (2024)
R. Masaoka, T. Soejima, HW, arXiv:2406.06415




(Recap) Frustration
in Quantum Many-Body Systems

* Antiferromagetic interaction 1 FAY
among three splns 1,2,3. |
H = Hy,+ H,y; + H;, A, A, X

* No way of making all terms
simultaneously minimized. >4 I
— frustration. \7 ﬁ23 ,

* More generally, H is frustration free if

» There exists a decomposition H = Ziﬁi with following properties.

> ﬁi’s are finite ranged. I-All-’s do not have to commute with each other.

» Ground state | D) of H minimizes all I—AIZ- simultaneously.
.e., H;| ®gs) = Egg ;| Pgs) and Egg; =0 is GS energy of H,.
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Conjecture 1:

Quadratic Dispersion
If H is
» frustration free
> translation invariant
> gapless

there exists | ') such that

» Translation eigenstate: T | ;) = o ik | ¥P7)

» Soft dispersion: (‘P; \H\‘I’) Ey = O(UC k()‘ )

Gapless phases with linear dispersion cannot be realized by FF H.
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Conjecture 2:

Quadratic Dispersion
If H is

» frustration free

> gapless
the finite size gap of Hise = O(L™?).

Low-energy effective field theory of critical FF system
cannot be Lorentz invariant.

> 3m

IC€



More basic conjecture:
Absence of finite size splitting

» Arrange all eigenvalues of H as E,LE L--LZEpwithE, =0.

e In general (regardless of frustration),
H is gapped < there exists Ndeg(L) such that

hmEN =0and lim Ey H;éO

L—>o0 L— 00
/\\ /\\

finite size splitting energy gap ™ E,




More basic conjecture:
Absence of finite size splitting

Arrange all eigenvalues of H as E,<E <

In general (regardless of frustration),
H is gapped < there exists Ndeg(L) such that

lim Ey,, = =0and lim Ey
L— o0 L— o0
/\

20,

/\

finite size splitting

energy gap

Conjecture: If H is frustration-free, Ey

deg

= () even in finite L.

l.e., no Anderson tower for continuous symmetry breaking.

Let Ndeg be the largest integer n with E, = 0.

Thendefinee = Ey 41 7 0.
H is gapped © Iim ¢ # 0.

L— o0

£y

E2



Examples

* Frustrated models
> Transverse-field Ising model
> perturbed MG model
> Haldane model

» perturbed toric code

<finite size splitting




e Frustrated models

>

>

>

>

Transverse-field Ising model

perturbed MG model

Haldane model

perturbed toric code

<finite size splitting

Examples

* Frustration Free
> Ising model
> MG model
> ALKT model

» toric code

J

no
splitting




New theorem

» Suppose H is frustration free.

» Consider an equal time correlation function
(D | @;(1 — G)0;| ®g) for some operators Oy, Oy

G is the projector onto GS manifold

> |f it shows power-law decay
[ (@gs| O1(1 = G)O}| D) | ~ CLPfor |X=F| ~ L

then, the finite size gap of Hise = O(L™?).
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Proof by
Gosset-Huang inequality

e Hastings-Koma (2006): In general, in systems with spectral gap €
[(Pgs| OI(1 — G)O| D) | < Ce81e

1
— Correlation length & ~ —

€
e Gosset-Huang (2016): If H is frustration-free, ~ T 1
% 1 N /7 - : € MY\
[ {®s] 01 = )05 D) | < CeXP( ‘8’\x—y\\/ 2 )Lz
g-te¢€
1
— Correlation length £ ~ —
€

. Consistent with | (D | @(i - é)@\chS) | ~CL™ (|X=9]|~L)

only when € = O(L™?).



Mapping to frustration-free
Hamiltonian

e Markov chain with (i) local update rule & (ii) detailed balance condition

can be mapped to FF Hamiltonian by HC,C, — — \/

correspondence

d dim.

d+1
dim.

A

Dynamics by
RK Hamiltonian

Ground state £

N

1

-

r — A7
2cosh(J )., B, 6%)

w(C") W

Canonical
distribution

Markov chain

N
_ /\é , /\Z,
(e ]GFZ?’GB;G? . 5)_{)
r

w(C) ¢

w(C) = o’ L)) %0

for Ising model



Mapping to frustration-free
Hamiltonian

e Markov chain with (i) local update rule & (ii) detailed balance condition
w(C")

WC,C"
w(C)

can be mapped to FF Hamiltonian by HC,C, — — \/

, correspondence
d dim.

. J) . . 00
5 5 Canonical w( ( "\ — e G,j) UJ
Ground state 3 > Seribntion ( )
d+1

dim. Dynam.lcs t?y Markov chain
RK Hamiltonian

S N~

Ifla — 1 ¢ —J 6§27’e3? G -
" 2cosh(J)Y. . 6%) F
I’JEB?’ r,

for Ising model

e Then our result on FF Hamiltonian € = O(L %) immediately implies z > 2 !
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Remaining puzzle
Field theoretic understanding?

1 1
. TypeA: & = Egab(O)ft“fzb -5 g (0)Vr Val+ -

Usually linear dispersion.

1
o TpeB: L= puait = g0 Va - Val + -

Require at least two fields. Not applicable when only one-dimensional coset space

1. 1 1
. Lifshitz type field & = 56’2 — 5( V260)? / Free boson & = iw*iyr — > Vy* Vi

Stronger fluctuation? ’t Symmetry is larger

{ Finite-size splitting? | than U(1) |
Examples Generators Q Order Parameter © Symmetry [H,O] Frustration-Free Anderson Tower
) H(FM) S . 82 (a=2,9) Yo Broken =0 v Absent
H (Chj“n> (s>1) Yot o By S & Broken  #0 v Absent
7 {adder) S (8%, + sz 29) Soi,(87,87,—3Y,5Y,) Broken #0 v Absent
gladder) Ly | SE (870 +875) S (85187, —8Y,3Y,) Unbroken # 0 — —




Summary

| thought I’ve done everything | can do for SSB / NGBs
during my PhD program with Hitoshi.

Turns out there are still many things to do.
Surprising connection between seemingly unrelated puzzles.

Let’s work together again for possible field theoretic understanding!
... | gave a similar talk

at Berkeley but we didn’t
have much time to chat
that time.

Maybe this time...

Congratulations again!




