Spontaneous symmetry breaking & low-energy excitations in gapless frustration free systems

Haruki Watanabe Applied Physics department University of Tokyo

- UC Berkeley PhD program in 2011-2015
- Official PhD advisor: Ashvin Vishwanath But worked a lot with Hitoshi
- Area: Condensed-Matter Theory

What I discuss today

SpontaneousFrustrationSymmetry+FreeBreakingFree

What I discuss today

Spontaneous Symmetry + Breaking Frustration Free

My works with Hitoshi

- H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Physical Review Letters 108, 251602 (2012).
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons.
 Physical Review Letters 110, 181601 (2013).
- H. Watanabe, T. Brauner, and H. Murayama, Massive Nambu-Goldstone Bosons.
 Physical Review Letters 111, 021601 (2013).
- H. Watanabe and H. Murayama, Noncommuting Momenta of Topological Solitons. Physical Review Letters 112, 191804 (2014).
- H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems. Physical Review X 4, 031057 (2014).
- H. Watanabe and H. Murayama, Nambu-Goldstone bosons with fractional-power dispersion relations. Physical Review D (Rapid Communications) 89, 101701 (2014).
- H. Watanabe and H. Murayama, Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems. Physical Review D (Rapid Communications) 90, 121703 (2014).

My works with Hitoshi

- H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Physical Review Letters 108, 251602 (2012).
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons.
 Physical Review Letters 110, 181601 (2013).
- H. Watanabe, T. Brauner, and H. Murayama, Massive Nambu-Goldstone Bosons.
 Physical Review Letters 111, 021601 (2013).
- H. Watanabe and H. Murayama, Noncommuting Momenta of Topological Solitons. Physical Review Letters 112, 191804 (2014).
- H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems. Physical Review X 4, 031057 (2014).
- H. Watanabe and H. Murayama, Nambu-Goldstone bosons with fractional-power dispersion relations. Physical Review D (Rapid Communications) 89, 101701 (2014).
- H. Watanabe and H. Murayama, Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems. Physical Review D (Rapid Communications) 90, 121703 (2014).

All started from my question in Hitoshi's QFT class

My works with Hitoshi

- H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Physical Review Letters 108, 251602 (2012).
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons. Physical Review Letters 110, 181601 (2013).
- H. Watanabe, T. Brauner, and H. Murayama, Massive Nambu-Goldstone Bosons.
 Physical Review Letters 111, 021601 (2013).
- H. Watanabe and H. Murayama, Noncommuting Momenta of Topological Solitons. Physical Review Letters 112, 191804 (2014).
- H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems. Physical Review X 4, 031057 (2014).
- H. Watanabe and H. Murayama, Nambu-Goldstone bosons with fractional-power dispersion relations. Physical Review D (Rapid Communications) 89, 101701 (2014).
- H. Watanabe and H. Murayama, Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems. Physical Review D (Rapid Communications) 90, 121703 (2014).

All started from my question in Hitoshi's QFT class

What I discuss today

Spontaneous Symmetry + Fruition Breaking

• Antiferromagetic interaction among three spins 1,2,3. $\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$

• Antiferromagetic interaction among three spins 1,2,3. $\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$

• Antiferromagetic interaction among three spins 1,2,3. $\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$

- Antiferromagetic interaction among three spins 1,2,3. $\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$
- No way of making all terms simultaneously minimized.
 → frustration.

- Antiferromagetic interaction among three spins 1,2,3. $\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$
- No way of making all terms simultaneously minimized.
 → frustration.

- More generally, \hat{H} is *frustration free* if
 - There exists a decomposition $\hat{H} = \sum_{i} \hat{H}_{i}$ with following properties.
 - \hat{H}_i 's are finite ranged. \hat{H}_i 's do not have to commute with each other.
 - Ground state $|\Phi_{\text{GS}}\rangle$ of \hat{H} minimizes all \hat{H}_i simultaneously. i.e., $\hat{H}_i |\Phi_{\text{GS}}\rangle = E_{\text{GS},i} |\Phi_{\text{GS}}\rangle$ and $E_{\text{GS},i} = 0$ is GS energy of \hat{H}_i .

Examples of FF spin models

- Paramagnet: $\hat{H}_i = -\hat{s}_i^z$
- Majumdar-Ghosh model: $\hat{H}_{i}^{(S=1/2)} = \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1} + \hat{\vec{s}}_{i+1} \cdot \hat{\vec{s}}_{i+2} + \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+2}$
- AKLT:

$$\hat{H}_{i}^{(S=1)} = \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1} + \frac{1}{3} (\hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1})^{2}$$

• Toric code (commuting projector): $\hat{H} = -\sum_{+} \hat{V}_{+} - \sum_{-} \hat{P}_{-}$ +

• Fractons, ...

Examples of FF spin models

- Paramagnet: $\hat{H}_i = -\hat{s}_i^z$
- Majumdar-Ghosh model: $\hat{H}_{i}^{(S=1/2)} = \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1} + \hat{\vec{s}}_{i+1} \cdot \hat{\vec{s}}_{i+2} + \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+2}$ SSB of translation
- AKLT:

$$\hat{H}_{i}^{(S=1)} = \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1} + \frac{1}{3} (\hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1})^{2}$$

- Toric code (commuting projector): $\hat{H} = -\sum_{+} \hat{V}_{+} - \sum_{\square} \hat{P}_{\square}$ +
- \hat{X} \hat{Z}
- Topological Order

SPT

Trivial

• Fractons, ...

Goal

- We want to understand
 - General properties and limitations of FF Hamiltonians.
 - Which phase can be represented by FF Hamiltonians.

- We discuss several conjectures/new results on FF systems.
 - If gapless, excitation is quadratic or softer: $E_{\vec{k}} = O(|\vec{k} \vec{k}_0|^2)$
 - If gapless, finite size gap is $\epsilon = O(L^{-2})$.
 - If gapped, finite size splitting of degeneracy is absent.

Markov Chain Monte Carlo (MCMC)

- Simulation method for classical statistical mechanical systems
- Boltzmann weight $w(C) = e^{-E(C)}$ e.g. Ising model $E(C) = -J \sum_{(i,j)} \sigma_i \sigma_j$
- Master equation

$$\frac{d}{dt}p(t,C) = \sum_{C' \in S} W_{C,C'}p(t,C')$$

- Local update rule $W = \sum_{i} W_{i}$
- Detailed balance condition $W_{C,C'}w(C') = W_{C',C}w(C)$

2D Ising model (ordered phase)

Critical Slowing Down

• As the system approaches to a critical point, the relaxation time τ becomes longer and longer.

• At the critical point, the relaxation $\lim_{e \to |i-j|/\xi} \tau \propto L^z$ (*z* : dynamic critical exponent). $-\langle O_i \rangle \langle O_j \rangle \qquad e^{-|i-j|/\xi} \qquad \frac{|i-j|^p}{|i-j|^p}$ $e^{-|i-j|/\xi}$ $|\langle Oe^{Wt}O \rangle - \langle O \rangle^2| \simeq Ce^{-t/\tau}$ with $\tau = 1/\epsilon$.

	1	L^{-z}	L^{-z}
	Models	Dynamic cr(tical exponen	$t z (z \rightarrow 2)$ believe $z > 2$
ϵ	Ising $(2D)$	2.1667(5) [14]	without a proof.
	Ising $(3D)$	2.0245(15) [15]	Obtained smaller 7
	Heisenberg $(3D)$	2.033(5) [16]	
	Three-state Potts (2D)	2.193(5) [17]	by giving up locality or
	Four-state Potts $(2D)$	2.296(5) [18]	detailed balance.

$$L = 64$$
 $L = 128$ $t = 0$ $L = 256$

 $J = J_c = 0.440687...$ (critical point) $\tau \propto L^z$, z = 2.1667(5)

 $J = 1.1346J_c$ (ordered phase) $\tau \propto L^z$, z = 2

 $J = 2.269 J_c$ (ordered phase) $\tau \propto L^z$, z = 2

 $J = 2.269 J_c$ (ordered phase) $\tau \propto L^z$, z = 2

Outline

- Nambu-Goldstone bosons in nonrelativistic systems HW, H. Murayama, PRL (2012) *Editors' Suggestions*
- Spontaneous breaking of U(1) symmetry in 1+1D HW, H. Katsura, J.Y. Lee, PRL (2024) *Editors' Suggestions*
- Low-energy excitations in frustration-free systems
 R. Masaoka, T. Soejima, HW, PRB (2024)
 R. Masaoka, T. Soejima, HW, arXiv:2406.06415

Outline

- Nambu-Goldstone bosons in nonrelativistic systems HW, H. Murayama, PRL (2012) *Editors' Suggestions*
- Spontaneous breaking of U(1) symmetry in 1+1D HW, H. Katsura, J.Y. Lee, PRL (2024) *Editors' Suggestions*
- Low-energy excitations in frustration-free systems
 R. Masaoka, T. Soejima, HW, PRB (2024)
 R. Masaoka, T. Soejima, HW, arXiv:2406.06415

Nambu-Goldstone bosons in relativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.
- Nambu-Goldstone bosons are low-energy fluctuations within the coset space.
- The number of broken generators $N_{BG} = \dim(G/H) = \dim G \dim H$.
- The number Nambu-Goldstone bosons $N_{\rm NGB}$ is always given by $N_{\rm BG}$.

• Effective Lagrangian
$$\mathscr{L} = \frac{1}{2}g_{ab}(\pi)\partial_{\mu}\pi^{a}\partial^{\mu}\pi^{b} + \dots = \frac{1}{2}g_{ab}(0)\partial_{\mu}\pi^{a}\partial^{\mu}\pi^{b} + \dots$$

Nambu-Goldstone bosons in nonrelativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.
- Nambu-Goldstone bosons are low-energy fluctuations within the coset space.
- The number of broken generators $N_{BG} = \dim(G/H) = \dim G \dim H$.

Nambu-Goldstone bosons in nonrelativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.
- Nambu-Goldstone bosons are low-energy fluctuations within the coset space.
- The number of broken generators $N_{BG} = \dim(G/H) = \dim G \dim H$.
- The number Nambu-Goldstone bosons $N_{\rm NGB}$ is sometimes smaller than $N_{\rm BG}$.

Nambu-Goldstone bosons in nonrelativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.

- (unchanged) Nambu-Goldstone bosons are low-energy fluctuations within the coset space.
- The number of broken generators $N_{\rm BG} = \dim(G/H) = \dim G \dim H$.
- The number Nambu-Goldstone bosons $N_{\rm NGB}$ is sometimes smaller than $N_{\rm BG}$.

•	Many examples	Examples	G/H	n _{BG}	n _{NGB}
•	Systematic understanding?	QCD	$SU(3) \times SU(3)/SU(3)$	8	8
		Antiferromagnet	SO(3)/SO(2)	2	2
		Ferromagnet	SO(3)/SO(2)	2	1
		Ferrimagnet	SO(3)/SO(2)	2	1
		Kaon ($\mu = 0$)	U(2)/U(1)	3	3
		Kaon ($\mu > 0$)	U(2)/U(1)	3	2
		BEC (planar)	$SO(3) \times U(1)/U(1)$	3	3
		BEC (ferro)	$SO(3) \times U(1)/U(1)'$	3	2
		Crystal (2+1D)	T^2	2	2
		Wigner crystal	T^2	2	1
		Skyrmion crystal	T^2	2	1

Effective Lagrangian

• Lorentz symmetry (+derivative expansion)

$$\mathscr{L} = \frac{1}{2} g_{ab}(\pi) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} + \dots = \frac{1}{2} g_{ab}(0) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} + \dots$$

Effective Lagrangian

- Lorentz symmetry (+derivative expansion) $\mathscr{L} = \frac{1}{2} g_{ab}(\pi) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} + \dots = \frac{1}{2} g_{ab}(0) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} + \dots$
- Spacial rotation symmetry (+derivative expansion) $\mathscr{L} = c_a(\pi)\dot{\pi}^a + \frac{1}{2}\bar{g}_{ab}(\pi)\dot{\pi}^a\dot{\pi}^b - \frac{1}{2}\bar{g}_{ab}(\pi)\nabla\pi^a\cdot\nabla\pi^b + \cdots$ $= \rho_{ab}\pi^b\dot{\pi}^a + \frac{1}{2}\bar{g}_{ab}(0)\dot{\pi}^a\dot{\pi}^b - \frac{1}{2}\bar{g}_{ab}(0)\nabla\pi^a\cdot\nabla\pi^b + \cdots$

Effective Lagrangian

- Lorentz symmetry (+derivative expansion) $\mathscr{L} = \frac{1}{2} g_{ab}(\pi) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} + \dots = \frac{1}{2} g_{ab}(0) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} + \dots$
- Spacial rotation symmetry (+derivative expansion) $\mathscr{L} = c_a(\pi)\dot{\pi}^a + \frac{1}{2}\bar{g}_{ab}(\pi)\dot{\pi}^a\dot{\pi}^b - \frac{1}{2}\bar{g}_{ab}(\pi)\nabla\pi^a\cdot\nabla\pi^b + \cdots$ $= \rho_{ab}\pi^b\dot{\pi}^a + \frac{1}{2}\bar{g}_{ab}(0)\dot{\pi}^a\dot{\pi}^b - \frac{1}{2}\bar{g}_{ab}(0)\nabla\pi^a\cdot\nabla\pi^b + \cdots$

• Skew matrix ρ_{ab} is related to the broken generators: $\rho_{ab} = \frac{i}{V} \langle [\hat{Q}_a, \hat{Q}_b] \rangle$

Block diagonal form:
$$\rho = \begin{bmatrix} 0 & \lambda_1 & & & \\ -\lambda_1 & 0 & & & \\ & \ddots & & & \\ & & 0 & \lambda_m & \\ & & -\lambda_m & 0 & \text{type A} \\ \hline \text{type B} & 0 & \cdots & 0 \\ & & & \vdots & \ddots & \vdots \\ & & & 0 & \cdots & 0 \end{bmatrix} \qquad m = \frac{1}{2} \text{rank}\rho$$

• Type A:
$$\mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

 $\pi^{2m+1}, \dots, \pi^{N_{\text{BG}}}$ are independent variables.
 $\rightarrow N_{\text{A}} = N_{\text{BG}} - 2m = N_{\text{BG}} - \frac{1}{2} \text{rank}\rho$
Dispersion is generically linear: $\omega_{\vec{k}} \propto k$.

• Type A:
$$\mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

 $\pi^{2m+1}, \dots, \pi^{N_{BG}}$ are independent variables.
 $\rightarrow N_A = N_{BG} - 2m = N_{BG} - \frac{1}{2} \operatorname{rank} \rho$
Dispersion is generically linear: $\omega_{\vec{k}} \propto k$.
• Type B: $\mathscr{L} = \rho_{ab} \pi^b \dot{\pi}^a - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$
 $\pi^{2\ell-1}$ and $\pi^{2\ell}$ ($\ell = 1, 2, \cdots, m$) are canonically conjugate variables.
 $\rightarrow N_B = m = \frac{1}{2} \operatorname{rank} \rho$

Dispersion is generically quadratic: $\omega_{\vec{k}} \propto k^2$.

• Type A:
$$\mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

 $\pi^{2m+1}, \dots, \pi^{N_{BG}}$ are independent variables.
 $\rightarrow N_A = N_{BG} - 2m = N_{BG} - \frac{1}{2} \operatorname{rank} \rho$
Dispersion is generically linear: $\omega_{\vec{k}} \propto k$.
• Type B: $\mathscr{L} = \rho_{ab} \pi^b \dot{\pi}^a - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$
 $\pi^{2\ell-1}$ and $\pi^{2\ell}$ ($\ell = 1, 2, \cdots, m$) are canonically conjugate variables.
 $\rightarrow N_B = m = \frac{1}{2} \operatorname{rank} \rho$
Dispersion is generically quadratic: $\omega_{\vec{k}} \propto k^2$.
• $N_A + 2N_B = N_{BG}$
HW, T. Brauner, PRD (2011)
HW, H. Murayama, PRL (2012)
Y. Hidaka, PRL (2013)

$$\begin{aligned} & \text{Type A: } \mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^t \\ \pi^{2m+1}, \dots, \pi^{N_{\text{BG}}} \text{ are independent variables.} \\ & \rightarrow N_{\text{A}} = N_{\text{BG}} - 2m = N_{\text{BG}} - \frac{1}{2} \text{rank}\rho \\ & \text{Dispersion is generically linear: } \omega_{\overline{k}} \propto k. \end{aligned}$$

$$& \text{Type B: } \mathscr{L} = \rho_{ab} \pi^b \dot{\pi}^a - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots \\ \pi^{2\ell-1} \text{ and } \pi^{2\ell} (\ell = 1, 2, \cdots, m) \text{ are canonically cor} \\ & \rightarrow N_{\text{B}} = m = \frac{1}{2} \text{rank}\rho \\ & \text{Dispersion is generically quadratic: } \omega_{\overline{k}} \propto k^2. \end{aligned}$$

Nambu-Goldstone bosons in nonrelativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.
- Nambu-Goldstone bosons are low-energy fluctuations within the coset space.
- The number of broken generators $N_{BG} = \dim(G/H) = \dim G \dim H$.
- The number Nambu-Goldstone bosons $N_{\rm NGB}$ is sometimes smaller than $N_{\rm GB}$.

 Many examples 	Examples	G/H	n _{BG}	n _{NGB}
	QCD	$SU(3) \times SU(3)/SU(3)$	8	8
Systematic understanding	Antiferromagnet	SO(3)/SO(2)	2	2
achieved!	Ferromagnet	SO(3)/SO(2)	2	1
	Ferrimagnet	SO(3)/SO(2)	2	1
	Kaon ($\mu = 0$)	U(2)/U(1)	3	3
	Kaon ($\mu > 0$)	U(2)/U(1)	3	2
	BEC (planar)	$SO(3) \times U(1)/U(1)$	3	3
	BEC (ferro)	$SO(3) \times U(1)/U(1)'$	3	2
	Crystal (2+1D)	T^2	2	2
	Wigner crystal	T^2	2	1
	Skyrmion crystal	T^2	2	1

Nambu-Goldstone bosons in nonrelativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.
- Nambu-Goldstone bosons are low-energy fluctuations within the coset space.
- The number of broken generators $N_{BG} = \dim(G/H) = \dim G \dim H$.
- The number Nambu-Goldstone bosons $N_{\rm NGB}$ is sometimes smaller than $N_{\rm GB}$.

 Many examples 	Examples	G/H	$n_{\rm BG} - n_{\rm NGB} = (1/2) \operatorname{rank} \rho$		
 Custometic un deveten din a 	QCD	$SU(3) \times SU(3)/SU(3)$	8	8	0
 Systematic understanding 	Antiferromagnet	SO(3)/SO(2)	2	2	0
achieved!	Ferromagnet	SO(3)/SO(2)	2	1	1
	Ferrimagnet	SO(3)/SO(2)	2	1	1
	Kaon ($\mu = 0$)	U(2)/U(1)	3	3	0
	Kaon ($\mu > 0$)	U(2)/U(1)	3	2	1
	BEC (planar)	$SO(3) \times U(1)/U(1)$	3	3	0
	BEC (ferro)	$SO(3) \times U(1)/U(1)'$	3	2	1
	Crystal (2+1D)	T^2	2	2	0
	Wigner crystal	T^2	2	1	1
	Skyrmion crystal	T^2	2	1	1
Nambu-Goldstone bosons in nonrelativistic systems

- Suppose the symmetry of the system G is spontaneously broken to H.
- Coset space G/H is the space of degenerate ground states.

現代物理学にひそむ、50年来の難問を解決			和田信樹 citan ate		
ノーベル賞を受賞	した「南部理論」の拡張に	いどんだ大学院生	arminin and an armining		
2008年にノーベル賞を受賞した。本部第一部第士による「未知事題は、 弊約字の近例における理想に、私たちの身のよわらにある把握は、相 かくみいていくと安穏利には要任子になる。しかし、満回課題を身わ まわりの増算にその支まれてはなるには、ある日間的があった。これに 離問を知いたカリフォルニア大学がトークレー 包集工程(の運び思想た んは、開代物理学の意識(にしたん)に、課題の(認知)日本での開始。 その過程で出会った研究者たちとのやりとりについて語ってもらった。			An and a set of the se		
AND STREET, AND STREET, AND			arrabachita-Avanag		
い水だ加沢されていなかっ	た。賞に、単代の素料子物理学の単腐と	ます。そのため、温度や発度をもつ	48. 1301-34211 mm h		
朝日の国生子の大臣な問題間に当	11時 なっています。しかし、別様の推測は	教養内の現象におり外りまでは放き	山田主王 単物で、 きりと一般的にこ		
アナロパーラレーのの使うな	第二 素粒子の読書とはことをきある物質	C. ISPACHAMICACLESS.	1877にきはすだといううかにため		
施設理学を研究しています。44-	THE OTHER, DEVELOPMENT OF	- Energiante	ADREED ANT COART		
死亡では東京大学に会話している	A HIS COMMANDER AVAIL	時代取得学にそのような歴史のた	ARD GHENDON-HAR-B	1	
の、博士課程では研究の提供をは	コア 身後ならのたと、良の福田がよい	問題デネると知ったのは、様主課程	CAMPADCO.		
あため、こちらへの進学を決めまし	たい 州です、福石をつくる数多くの鉄原子	1月日の夏てした。研究テーマを決め	A REPORTANT AND A REPORT AND A	a salar	
	は、それぞれが小さな綴石をもつと考	さたのにしろいろな話又を読んでいる	A DE DE LA COMPANY ALLERS		
物理学の研究には世界中の多く	の えることができます。この小さな弱石	中で、この時間についていビューまし	Compared a restauranting		
人がたずされっていますが、たとえ	は は、ある税度の最度加工だとはらば	ている解放び対抗い変しる。そして、	AND A DECK. AND A DIAMA		
車程子をあつかり物理学と、物質	# らな方向舌向いてひまい、鉄余体とし	「こんなに重要なことがまだわかって	and the state of t	and the second second	
あつかう物理学のように、分野が大	* Tは毎夜ではなくなっています。この	いないのか と東京を受けたらです。	LARDEL LOL DUTING	A REAL PROPERTY OF	
くちがうとなかなか深い交流がない。	とき、どの方向も特別ではないという		anurig-rebit?tel La		
です。なので、ある分野の興味深い	・ 意味で、対称性ももつということがで	その展文の著者は、キャプのモーレ	AND APPENDIZED AND	CI	
課題が末期決のまま接られていること	きます。しかし、温度が低くなると	フェルト大学でポストドウターとして	A DIARCENIL/FLEVERIES	Lat	
きはかの分野の人は知らない という	この小さな磁石の向きがひとりでにキ	経営をしていたトーマスーンラヴァート	LOS MERCHTAL FALLET	And the second of the second se	
ことがわさえます。	ろい、特別な方向が生まれます。 こ	ACCONTUE (CONMACC	AND DALL WEST OFFICE		
Contraction of the second	れは、催石の対称性が自発的に進た	PERCENTER AND ALLER	The second state s	A REAL PROPERTY AND A REAL PROPERTY A REAL PRO	
今回、僅か相山西博士との共同初	たことを意味します。	geografy 27997-enca	CARDING TO A THE PARTY OF	and the second second second	
変で取り組んだ「対称性の自身的な	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	MELT, CORP. PAJE CAUF	Sector of the Date		
望れ」についての問題は、まさにその	COTOC NORODESDES	WARRAN CONTRACTOR	TANK IL-MU-MERICAN	and a second second	
倒され、この考え方は、原田端一郎	れは物質の世界でもみをこれができま	わしの細たとの後の() そし	CARDING IN THE REAL PROPERTY AND INCOME.		
博士によって、50年以上和に物理学	す。一方、南部博士の理論は、絶対	TEANT COMMON	CONTRACTOR C. STRUCTOR		
の世界へもちこまれたものです。	温度0度の真空中における、素粒子	C DU 4 SCORENCO MAR	一個 人の総合の用を通じて、目	A second	
2008年にはノーベル物理学賞を受	の運動や反応主想定してつくられてい	ないは離別なからローチルをついけ	#11月16月1時住の前たを建築されて		
8. 	料に対理工 カンフォトーアスターーン、一般型学校学 東京ス カンフォトーアスターーン、一般型学校学 東京ス サンジン教育学校の中国社会研究、東京学校会 サンジン教育学校の大学会、社会研究社会研究	2110日の1010月1日日11 1月1日に、日本11日日日に、11日日年6月1日 1月1日に、11日日日日日に、11日日年6月1日 1月1日に、11日日日日日に、11日日年6月1日 1月1日日、11日日日日日に出た5日4月1日 1月1日日、11日日日日日に出た5日4月1日	REE-ERT TITIFERMIC SAMPIES ENVIRON	- State	

	0 (2// 0 (1/	2	2	
BEC (planar)	$SO(3) \times U(1)/U(1)$	3	3	0
BEC (ferro)	$SO(3) \times U(1)/U(1)'$	3	2	1
Crystal (2+1D)	T^2	2	2	0
Wigner crystal	T^2	2	1	1
Skyrmion crystal	T^2	2	1	1

My works with Hitoshi

- H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Physical Review Letters 108, 251602 (2012).
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons.
 Physical Review Letters 110, 181601 (2013).
- H. Watanabe, T. Brauner, and H. Murayama, Massive Nambu-Goldstone Bosons.
 Physical Review Letters 111, 021601 (2013).
- H. Watanabe and H. Murayama, Noncommuting Momenta of Topological Solitons. Physical Review Letters 112, 191804 (2014).
- H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems. Physical Review X 4, 031057 (2014).
- H. Watanabe and H. Murayama, Nambu-Goldstone bosons with fractional-power dispersion relations. Physical Review D (Rapid Communications) 89, 101701 (2014).
- H. Watanabe and H. Murayama, Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems. Physical Review D (Rapid Communications) 90, 121703 (2014).

My works with Hitoshi

- H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance Physical Review Letters 108, 251602 (2012).
- H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons.
 Physical Review Letters 110, 181601 (2013).
- H. Watanabe, T. Brauner, and H. Murayama, Massive Nambu-Goldstone Bosons.

Physical

H. Wata

I thought I've done everything I could do...

Noncommuting momenta or ropological Solitons: Physical Review Letters 112, 191804 (2014).

- H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems. Physical Review X 4, 031057 (2014).
- H. Watanabe and H. Murayama, Nambu-Goldstone bosons with fractional-power dispersion relations. Physical Review D (Rapid Communications) 89, 101701 (2014).
- H. Watanabe and H. Murayama, Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems. Physical Review D (Rapid Communications) 90, 121703 (2014).

Outline

- Nambu-Goldstone bosons in nonrelativistic systems HW, H. Murayama, PRL (2012) *Editors' Suggestions*
- Spontaneous breaking of U(1) symmetry in 1+1D HW, H. Katsura, J.Y. Lee, PRL (2024) *Editors' Suggestions*
- Low-energy excitations in frustration-free systems
 R. Masaoka, T. Soejima, HW, PRB (2024)
 R. Masaoka, T. Soejima, HW, arXiv:2406.06415

Hohenberg-Mermin-Wagner theorem at T > 0

Hohenberg-Mermin-Wagner theorem at T > 0

• Hohenberg-Mermin-Wagner (HMW) theorem:

Hohenberg (1967), Mermin-Wagner (1966)

Continuous symmetries cannot be broken at finite *T* in $d \leq 2$.

• Nambu-Goldstone (NG) theorem: Nambu (1960), Goldstone (1961)

Spontaneously broken continuous symmetry \Rightarrow Gapless excitations

Hohenberg-Mermin-Wagner theorem at T > 0

• Hohenberg-Mermin-Wagner (HMW) theorem:

Continuous symmetries cannot be broken at finite T in $d \leq 2$.

• Nambu-Goldstone (NG) theorem: Nambu (1960), Goldstone (1961)

Spontaneously broken continuous symmetry \Rightarrow Gapless excitations

- Proof of HMW theorem (by contradiction)
 - 1. Suppose a continuous symmetry is broken.
 - 2. NG theorem implies gapless excitations (Nambu-Goldstone bosons).

3. Infrared divergence originating from NG bosons in $d \leq 2$ destroys the order parameter.

Hohenberg (1967), Mermin-Wagner (1966)

Hohenberg-Mermin-Wagner theorem at T = 0(Also known as Coleman theorem)

• Hohenberg-Mermin-Wagner (HMW) "theorem" at T = 0: Hohenberg (1967), Mermin-Wagner (1966)

- Proof of HMW theorem (by contradiction)
 - 1. Suppose a continuous symmetry is broken.
 - 2. NG theorem implies gapless excitations (Nambu-Goldstone bosons).

3. Infrared divergence originating from NG bosons in $d \le 2$ destroys the order parameter. $d \le 1$

Hohenberg-Mermin-Wagner theorem at T = 0(Also known as Coleman theorem)

• Hohenberg-Mermin-Wagner (HMW) "theorem" at T = 0: Hohenberg (1967), Mermin-Wagner (1966)

Hohenberg-Mermin-Wagner theorem at T = 0(Also known as Coleman theorem)

• Hohenberg-Mermin-Wagner (HMW) "theorem" at T = 0: Hohenberg (1967), Mermin-Wagner (1966)

Definition of Spontaneous Symmetry Breaking

Definition of Spontaneous Symmetry Breaking

• Consider spin systems defined on *d*-dim lattice Λ .

Suppose Hamiltonian $\hat{H} = \sum_{\vec{r} \in \Lambda} \hat{H}_{\vec{r}}$ has an **internal** continuous symmetry generated by $\hat{Q} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}}$ i.e. $[\hat{H}, \hat{Q}] = 0$.

Order parameter operator $\hat{\mathcal{O}}$ takes the form $\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$ with $\hat{X} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}}$.

Definition of Spontaneous Symmetry Breaking

• Consider spin systems defined on d-dim lattice Λ .

Suppose Hamiltonian $\hat{H} = \sum \hat{H}_{\vec{r}}$ has an **internal** continuous symmetry generated by $\hat{Q} = \sum \hat{Q}_{\vec{r}} \quad \text{i.e.} \ [\hat{H}, \hat{Q}] = 0.$ $\vec{r} \in \Lambda$

Order parameter operator $\hat{\mathcal{O}}$ takes the form $\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$ with $\hat{X} = \sum \hat{X}_{\vec{r}}$.

• Apply a symmetry-breaking field h by $\hat{H}(h) = \hat{H} - h\hat{O}$.

• Order parameter: $m(h) = \frac{\langle \hat{O} \rangle}{V}$ for the ground state of $\hat{H}(h)$.

Spontaneous symmetry breaking $\Leftrightarrow \left[\lim_{h \to +0} \lim_{V \to \infty} m(h) \neq 0 \right]$

 $\vec{r} \in \Lambda$

Well-known counterexample to the T = 0 version of HMW theorem

• Heisenberg ferromagnet:
$$\hat{H} = -J \sum_{i=1}^{L} \left(\hat{s}_{i}^{x} \hat{s}_{i+1}^{x} + \hat{s}_{i}^{y} \hat{s}_{i+1}^{y} + \hat{s}_{i}^{z} \hat{s}_{i+1}^{z} \right)$$

• Spin rotation symmetry about *z* axis generated by $\hat{Q} = \sum_{i=1}^{L} \hat{s}_{i}^{z}$.
• Order parameter $\hat{\mathcal{O}} = \sum_{i=1}^{L} \hat{s}_{i}^{x} = [i\hat{Q}, \hat{X}]$ with $\hat{X} = \sum_{i=1}^{L} \hat{s}_{i}^{y}$.

Well-known counterexample to the T = 0 version of HMW theorem

Heisenberg ferromagnet: $\hat{H} = -J\sum_{i=1}^{L} \left(\hat{s}_{i}^{x}\hat{s}_{i+1}^{x} + \hat{s}_{i}^{y}\hat{s}_{i+1}^{y} + \hat{s}_{i}^{z}\hat{s}_{i+1}^{z}\right).$ Spin rotation symmetry about *z* axis generated by $\hat{Q} = \sum \hat{s}_i^z$. i = 1Order parameter $\hat{\mathcal{O}} = \sum_{i=1}^{L} \hat{s}_{i}^{x} = [i\hat{Q}, \hat{X}]$ with $\hat{X} = \sum_{i=1}^{L} \hat{s}_{i}^{y}$. i=1 $\lim m(h) \neq 0$ $\hat{Q}' = \sum_{i=1}^{L} \hat{s}_i^y$ is also broken. $h \rightarrow +0 V \rightarrow \infty$ m1.0 $\stackrel{i=1}{G = \mathrm{SO}(3), H = \mathrm{SO}(2) \rightarrow G/H = S^2$ 0.51.011.00

-0.5

-0.2

-0.1

0.0

h

0.99 0.00 0.02 0.04

0.1

- $[\hat{H}, \hat{\mathcal{O}}] = 0 \Rightarrow$ No quantum fluctuations.
- The dispersion for NGB: $\omega_{\vec{k}} \propto k^2$ (type B)

One of new counterexamples at T = 0

HW, H. Katsura, J.Y. Lee, PRL (2024) Inspired by O. Ogunnaike, J. Feldmeier, J.Y. Lee, PRL (2023)

• s = 1 XXZ spin chain with four-spin interaction. $\Delta = 1 \Rightarrow$ Heisenberg ferromagnet. $\hat{H}_i = -J(\hat{s}_i^x \hat{s}_{i+1}^x + \hat{s}_i^y \hat{s}_{i+1}^y + \Delta \hat{s}_i^z \hat{s}_{i+1}^z) + \frac{J}{\Delta} [1 - (1 - \Delta)(\hat{s}_i^z)^2] [1 - (1 - \Delta)(\hat{s}_{i+1}^z)^2]$ • Spin rotation symmetry about z axis generated by $\hat{Q} = \sum_{i=1}^L \hat{s}_i^z$. • Order parameter $\hat{\mathcal{O}} = \sum_{i=1}^L \hat{s}_i^x = [i\hat{Q}, \hat{X}]$ with $\hat{X} = \sum_{i=1}^L \hat{s}_i^y$.

One of new counterexamples at T = 0

HW, H. Katsura, J.Y. Lee, PRL (2024) Inspired by O. Ogunnaike, J. Feldmeier, J.Y. Lee, PRL (2023)

0.5

-0.5

0.950

0.945

0.0

0.940 0.00 0.02 0.04

0.1

- s = 1 XXZ spin chain with four-spin interaction. $\Delta = 1 \Rightarrow$ Heisenberg ferromagnet. $\hat{H}_{i} = -J(\hat{s}_{i}^{x}\hat{s}_{i+1}^{x} + \hat{s}_{i}^{y}\hat{s}_{i+1}^{y} + \Delta\hat{s}_{i}^{z}\hat{s}_{i+1}^{z}) + \frac{J}{\Lambda} \left[1 - (1 - \Delta)(\hat{s}_{i}^{z})^{2}\right] \left[1 - (1 - \Delta)(\hat{s}_{i+1}^{z})^{2}\right]$ Spin rotation symmetry about *z* axis generated by $\hat{Q} = \sum \hat{s}_i^z$. Order parameter $\hat{\mathcal{O}} = \sum_{i=1}^{L} \hat{s}_{i}^{x} = [i\hat{Q}, \hat{X}]$ with $\hat{X} = \sum_{i=1}^{L} \hat{s}_{i}^{y}$. i=1 $\lim m(h) \neq 0$ $h \rightarrow +0 V \rightarrow \infty$ m • No other symmetry in this model. 1.0 $G = SO(2), H = e. \rightarrow G/H = S^1$
- $[\hat{H}, \hat{O}] \neq 0$ when $\Delta \neq 1$.
- The dispersion for NGBs: $\omega_{\vec{k}} \propto k^2$ -1.0Can be explained by "frustration-free" nature of the model^{0.1}

• Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

• Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

$$\frac{1}{V^2} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left| \frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle \right|^2}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

$$O(1) \ge \int \frac{d^d k}{(2\pi)^d} \frac{2T |m|^2}{Ck^2}$$

IR divergence in $d \le 2 \Rightarrow m = 0$ (i.e., no SSB)

Proof of HMW theorem for T = 0via Bogoliubov inequality Takada (1975)

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

$$O(1) \ge \int \frac{d^d k}{(2\pi)^d} \frac{2T |m|^2}{Ck^2}$$

IR divergence in $d \le 2 \Rightarrow m = 0$ (i.e., no SSB)

Proof of HMW theorem for T = 0via Bogoliubov inequality Takada (1975)

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ and $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$.

In our example n = 2. SSB is allowed in d > 0.

$$\mathcal{O}(1) \ge \int \frac{d^d k}{(2\pi)^d} \frac{2\mathcal{T} |m|^2}{Ck^2}$$

 $d \leq 2 - n$ IR divergence in $d \leq 2 \Rightarrow m = 0$ (i.e., no SSB)

Outline

- Nambu-Goldstone bosons in nonrelativistic systems HW, H. Murayama, PRL (2012) *Editors' Suggestions*
- Spontaneous breaking of U(1) symmetry in 1+1D HW, H. Katsura, J.Y. Lee, PRL (2024) *Editors' Suggestions*
- Low-energy excitations in frustration-free systems
 R. Masaoka, T. Soejima, HW, PRB (2024)
 R. Masaoka, T. Soejima, HW, arXiv:2406.06415

(Recap) Frustration in Quantum Many-Body Systems

- Antiferromagetic interaction among three spins 1,2,3. $\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$
- No way of making all terms simultaneously minimized.
 → frustration.

- More generally, \hat{H} is *frustration free* if
 - There exists a decomposition $\hat{H} = \sum_{i} \hat{H}_{i}$ with following properties.
 - \hat{H}_i 's are finite ranged. \hat{H}_i 's *do not* have to commute with each other.
 - Ground state $|\Phi_{\text{GS}}\rangle$ of \hat{H} minimizes all \hat{H}_i simultaneously. i.e., $\hat{H}_i |\Phi_{\text{GS}}\rangle = E_{\text{GS},i} |\Phi_{\text{GS}}\rangle$ and $E_{\text{GS},i} = 0$ is GS energy of \hat{H}_i .

Conjecture 1: Quadratic Dispersion

If \hat{H} is

- frustration free
- translation invariant
- gapless

Conjecture 1: Quadratic Dispersion

If \hat{H} is

- frustration free
- translation invariant
- gapless

there exists $|\Psi_{\vec{k}}\rangle$ such that

- Translation eigenstate: $\hat{T}_{\vec{a}} | \Psi_{\vec{k}} \rangle = e^{-i\vec{k}\cdot\vec{a}} | \Psi_{\vec{k}} \rangle$
- Soft dispersion: $\langle \Psi_{\vec{k}} | \hat{H} | \Psi_{\vec{k}} \rangle E_0 = O(|\vec{k} \vec{k}_0|^2)$

Conjecture 1: Quadratic Dispersion

If \hat{H} is

- frustration free
- translation invariant
- gapless

there exists $|\Psi_{\vec{k}}\rangle$ such that

- Translation eigenstate: $\hat{T}_{\vec{a}} | \Psi_{\vec{k}} \rangle = e^{-i\vec{k}\cdot\vec{a}} | \Psi_{\vec{k}} \rangle$
- Soft dispersion: $\langle \Psi_{\vec{k}} | \hat{H} | \Psi_{\vec{k}} \rangle E_0 = O(|\vec{k} \vec{k}_0|^2)$

Gapless phases with linear dispersion cannot be realized by FF H.

Conjecture 2: Quadratic Dispersion

If \hat{H} is

- frustration free
- translation invariant
- gapless

Conjecture 2: Quadratic Dispersion

If \hat{H} is

- frustration free
- translation invariant
- gapless

the finite size gap of \hat{H} is $\epsilon = O(L^{-2})$.

Conjecture 2: Quadratic Dispersion

If \hat{H} is

- frustration free
- translation invariant
- gapless
- the finite size gap of \hat{H} is $\epsilon = O(L^{-2})$.

Low-energy effective field theory of critical FF system cannot be Lorentz invariant.

More basic conjecture: Absence of finite size splitting

- Arrange all eigenvalues of \hat{H} as $E_1 \leq E_2 \leq \cdots \leq E_D$ with $E_1 = 0$.
- In general (regardless of frustration), \hat{H} is gapped \Leftrightarrow there exists $N_{\rm deg}(L)$ such that

More basic conjecture: Absence of finite size splitting

- Arrange all eigenvalues of \hat{H} as $E_1 \leq E_2 \leq \cdots \leq E_D$ with $E_1 = 0$.
- In general (regardless of frustration), \hat{H} is gapped \Leftrightarrow there exists $N_{\rm deg}(L)$ such that

 $\Xi - E_{\tilde{N}_{deg}+1}$

 $E_1 \quad E_2 \quad \cdots \quad E_{\tilde{N}_{deg}}$

- Conjecture: If \hat{H} is frustration-free, $E_{N_{deg}} = 0$ even in finite *L*. i.e., no Anderson tower for continuous symmetry breaking.
- Let \tilde{N}_{deg} be the largest integer n with $E_n = 0$. Then define $\epsilon \equiv E_{\tilde{N}_{deg}+1} \neq 0$. \hat{H} is gapped $\Leftrightarrow \lim_{L \to \infty} \epsilon \neq 0$.

Examples

- Frustrated models
 - Transverse-field Ising model
 - perturbed MG model
 - Haldane model
 - perturbed toric code

Examples

- Frustrated models
 - Transverse-field Ising model
 - perturbed MG model
 - Haldane model
 - perturbed toric code

- Frustration Free
 - Ising model
 - MG model
 - ALKT model
 - ► toric code

New theorem

- Suppose \hat{H} is frustration free.
- Consider an equal time correlation function $\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\text{GS}} \rangle$ for some operators $\hat{\mathcal{O}}_{\vec{x}}, \hat{\mathcal{O}}_{\vec{y}}$ \hat{G} is the projector onto GS manifold
- ► If it shows power-law decay $|\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}' | \Phi_{\text{GS}} \rangle| \sim CL^{-p} \text{ for } |\vec{x} - \vec{y}| \sim L$

then, the finite size gap of \hat{H} is $\epsilon = O(L^{-2})$.

Proof by Gosset-Huang inequality

• Hastings-Koma (2006): In general, in systems with spectral gap ϵ $|\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\text{GS}} \rangle| \leq C e^{-g' |\vec{x} - \vec{y}| \epsilon}$ \rightarrow Correlation length $\xi \sim \frac{1}{-}$

Proof by Gosset-Huang inequality

- Hastings-Koma (2006): In general, in systems with spectral gap ϵ $|\langle \Phi_{GS} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}' | \Phi_{GS} \rangle| \leq C e^{-g' |\vec{x} - \vec{y}| \epsilon}$ \rightarrow Correlation length $\xi \sim \frac{1}{\epsilon}$
- Gosset-Huang (2016): If H is frustration-free,

$$\begin{split} |\langle \Phi_{\rm GS} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}' | \Phi_{\rm GS} \rangle| &\leq C \exp\left(-g' |\vec{x} - \vec{y}| \sqrt{\frac{\epsilon}{g^2 + \epsilon}}\right) \\ \rightarrow \text{Correlation length } \xi \sim \frac{1}{\sqrt{\epsilon}} \end{split}$$

Proof by Gosset-Huang inequality

- Hastings-Koma (2006): In general, in systems with spectral gap ϵ $|\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}' | \Phi_{\text{GS}} \rangle| \leq C e^{-g' |\vec{x} - \vec{y}| \epsilon}$ \rightarrow Correlation length $\xi \sim \frac{1}{\epsilon}$
- Gosset-Huang (2016): If H is frustration-free, $|\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}' | \Phi_{\text{GS}} \rangle| \leq C \exp\left(-g' | \vec{x} - \vec{y} | \sqrt{\frac{\epsilon}{y^2 + \epsilon}}\right) \frac{1}{L^z}$ $\rightarrow \text{Correlation length } \xi \sim \frac{1}{\sqrt{\epsilon}}$
- Consistent with $|\langle \Phi_{\rm GS} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} \hat{G}) \hat{\mathcal{O}}_{\vec{y}}' | \Phi_{\rm GS} \rangle| \sim CL^{-p} (|\vec{x} \vec{y}| \sim L)$ only when $\epsilon = O(L^{-2})$.

Mapping to frustration-free Hamiltonian

• Markov chain with (i) local update rule & (ii) detailed balance condition

can be mapped to FF Hamiltonian by $H_{C,C'} = -\sqrt{\frac{w(C')}{w(C)}}W_{C,C'}$.

Mapping to frustration-free Hamiltonian

• Markov chain with (i) local update rule & (ii) detailed balance condition

can be mapped to FF Hamiltonian by $H_{C,C'} = -\sqrt{\frac{w(C')}{w(C)}}W_{C,C'}$.

• Then our result on FF Hamiltonian $\epsilon = O(L^{-2})$ immediately implies $z \ge 2$!!

• Type A:
$$\mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

Usually linear dispersion.

• Type A:
$$\mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

Usually linear dispersion.

• Type B:
$$\mathscr{L} = \rho_{ab} \pi^b \dot{\pi}^a - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

Require at least two fields. Not applicable when only one-dimensional coset space

• Type A:
$$\mathscr{L} = \frac{1}{2} \bar{g}_{ab}(0) \dot{\pi}^a \dot{\pi}^b - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

Usually linear dispersion.

• Type B:
$$\mathscr{L} = \rho_{ab} \pi^b \dot{\pi}^a - \frac{1}{2} \bar{g}_{ab}(0) \nabla \pi^a \cdot \nabla \pi^b + \cdots$$

Require at least two fields. Not applicable when only one-dimensional coset space

• Lifshitz type field
$$\mathscr{L} = \frac{1}{2}\dot{\theta}^2 - \frac{1}{2}(\nabla^2\theta)^2$$
 / Free boson $\mathscr{L} = i\psi^*\dot{\psi} - \frac{1}{2}\nabla\psi^*\nabla\psi$
Stronger fluctuation?
Finite-size splitting? Symmetry is larger than U(1)

Examples	Generators \hat{Q}	Order Parameter $\hat{\mathcal{O}}$	Symmetry	$[\hat{H},\hat{\mathcal{O}}]$	Frustration-Free	Anderson Tower
$\hat{H}^{(\mathrm{FM})}$	$\sum_{i=1}^L \hat{s}^a_i (a=x,y)$	$\sum_{i=1}^L \hat{s}_i^z$	Broken	= 0	\checkmark	Absent
$\hat{H}^{(\mathrm{chain})}~(s\geq 1)$	$\sum_{i=1}^L \hat{s}^z_{i,1}$	$\sum_{i=1}^L \hat{s}^x_i$	Broken	$\neq 0$	\checkmark	Absent
$\hat{H}^{(\mathrm{ladder})}$	$\sum_{i=1}^{L} (\hat{s}_{i,1}^z + \hat{s}_{i,2}^z)$	$\sum_{i=1}^{L} (\hat{s}_{i,1}^{x} \hat{s}_{i,2}^{x} - \hat{s}_{i,1}^{y} \hat{s}_{i,2}^{y})$	Broken	$\neq 0$	\checkmark	Absent
$\hat{H}^{(\mathrm{ladder})} + \hat{V}$	$\sum_{i=1}^{L} (\hat{s}_{i,1}^z + \hat{s}_{i,2}^z)$	$\sum_{i=1}^{L} (\hat{s}_{i,1}^{x} \hat{s}_{i,2}^{x} - \hat{s}_{i,1}^{y} \hat{s}_{i,2}^{y})$	Unbroken	$\neq 0$		

Summary

- I thought I've done everything I can do for SSB / NGBs during my PhD program with Hitoshi.
- Turns out there are still many things to do.
- Surprising connection between seemingly unrelated puzzles.
- Let's work together again for possible field theoretic understanding!

... I gave a similar talk
at Berkeley but we didn't
have much time to chat
that time.
Maybe this time...

Congratulations again!

