

Exploring Data for Heavy QCD Axion From Colliders to the Big Bang

[Hitoshi's Fest, Dec 17, 2024. Kavli IPMU]

Kohsaku Tobioka [Tobi]

Florida State University, KEK Theory center

My career started from IPMU as a Hitoshi's student

- IPMU building, 2009. [LHC started.]
- Hitoshi's the first best seller book, 2010.
- Became "Kavli" IPMU, 2012. [Higgs discovery]

• I was one of the first IPMU graduate students through UTokyo (2009 \rightarrow 2014).

• IPMU started in 2007. First anniversary in 2008 (Hitoshi convinced me to join).

My career started from IPMU as a Hitoshi's student

- IPMU building, 2009. [LHC started.]
- Hitoshi's the first best seller book, 2010.
- Became "Kavli" IPMU, 2012. [Higgs discovery]

• I was one of the first IPMU graduate students through UTokyo (2009 \rightarrow 2014).

• IPMU started in 2007. First anniversary in 2008 (Hitoshi convinced me to join).

Admin staff, students, postdocs, in my apartment

Hitoshi's family from Berkeley ('95-) to IPMU ('09-)

• Hitoshi's mentorship at IPMU did not start from scratch. Andre de Gouvea ...R. Harnik,... M.Buckley Sourav Mandal William Klemm Vikram Rentala Xiaochuan Lu Brian Henning

Hitoshi's family from Berkeley ('95-) to IPMU ('09-)

Hitoshi's mentorship at IPMU did not start from scratch.

Andre de Gouvea

...R. Harnik,... M.Buckley

Sourav Mandal

William Klemm

Working with Hitoshi as a graduate student

- He knows everything, especially for graduate students
- Time was VERY limited!!

But he knows everything & my 2month ~his 30min

Still I wish I had more time...

I realize the fact: Hitoshi actually spent a lot of time for students!!

I have to squeeze discussion time between appointments [thanks to Y. Enomoto]

		1
	Me	Hitoshi
osition	Associate Prof.	Prof & Founding Director
amily	2 kids	3 kids
udents	2	2(4)+2
Resut	Overwhelming!!	somehow working [twin Hitoshis ?]

Working with Hitoshi: Listen to experiments

Robert Cahn and Gerson Goldhaber

The Experimental Foundations of **Particle Physics**

SECOND EDITION

Hitoshi launched a reading group to prepare for the LHC data

Positron discovery by Anderson

Working with Hitoshi: Listen to experiments

Improved discovery of a nearly degenerate model: Minimal universal extra dimension model using M_{T2} at the LHC

<u>Hitoshi Murayama^{1,2}, Mihoko M. Nojiri^{2,3}, and Kohsaku Tobioka^{2,4}</u>

Show more

HM:interesting, I didn't know that! [IPMU seminar room C]

Working with Hitoshi: Listen to experiments

Improved discovery of a nearly degenerate model: Minimal universal extra dimension model using M_{T2} at the LHC

<u>Hitoshi Murayama^{1,2}, Mihoko M. Nojiri^{2,3}, and Kohsaku Tobioka^{2,4}</u>

Show more 🗸 🗸

Phys. Rev. D 84, 094015 - Published 14 November, 2011

Compact supersymmetry

<u>Hitoshi Murayama^{1,2,3}, Yasunori Nomura^{1,2}, Satoshi Shirai^{1,2}, and Kohsaku Tobioka^{3,4}</u>

Show more 🗸 🗸

Phys. Rev. D 86, 115014 – Published 7 December, 2012

Prepare for the difficult NP signal at LHC such as compressed spectrum Build a compelling model with SUSY. Try to explain Higgs mass=125GeV. Experimental challenge, measurements \rightarrow Pheno work, model, calculation

EDITORS' SUGGESTION

Natural Higgs Mass in Supersymmetry from **Nondecoupling Effects**

<u>Xiaochuan Lu^{1,2,*}, Hitoshi Murayama^{1,2,3,†}, Joshua T. Ruderman^{1,2,‡}, and Kohsaku</u> Tobioka^{3,4,§}

Show more 🗸 🗸

Expo

Phys. Rev. Lett. 112, 191803 - Published 14 May, 2014

Enhanced Higgs mass in Compact Supersymmetry

Regular Article – Theoretical Physics | Open access | Published: 05 April 2016 Volume 2016, article number 25, (2016) Cite this article

Exploring Data for Heavy QCD Axion

LHC challenge: low mass resonance below 100GeV

f_a [TeV]

- Typical dijet search at LHC >O(200) GeV
- Dijet with monojet trigger
 >50GeV
- Typical diphoton resonance
 70GeV (Higgs discovery)

 $\sigma_{EM}/\alpha_{s}^{2}$

- LHC diphoton resonance can be down to ~10 GeV
- Challenges in 0.1GeV<mx<10GeV
 ⇒B, Kaon, Beam-dump, Cosmology.

Related to big question: Strong CP& Axion

Heavy QCD Axion Must:

Heavier than standard mass

 $\frac{c_g \alpha_s}{8\pi} \frac{a}{f_a} G^{a\mu\nu} \tilde{G}^{a\mu\nu}$ Optional: $aB\tilde{B}, aW\tilde{W}, \partial_{\mu}a\bar{f}\gamma^{5}\gamma^{\mu}f$ to address strong CP

$$m_a \sim \frac{m_\pi f_\pi}{f_a} \sim 0.1 \text{MeV}\left(\frac{100 \text{GeV}}{f_a}\right)$$

Models: additional QCD SU(3)' to raise ma Berezhiani et al('01); Hook('04); Fukuda, Harigaya, Ibe, Yanagida('04). Dimopoulos et al('16); Hook et al('19); Valenti ('22)... Another class: Agrawal and Howe ('17)...

Why interesting?

- 1. Viable with lower f_a
- 2. Lower f_{a.} better quality of PQ symmetry

Low mass edge: kaon and proton beam-dump

- LHC down to 10GeV. $K^+ \rightarrow \pi^+ a$ constraints m_a<m_K-m_{π}~0.35GeV
- Proton beam-dump search m_a<0.5GeV due to shorter lifetime.

• 0.35-4 GeV, B physics $B \rightarrow Ka$

Heavy Axion from B decays

Production rate of $B \rightarrow Ka$

PRD 104 (**2021**) 055036 S. Chakraborty, M. Kraus, V. Loladze, T. Okui, KT

Robust production is from gluon coupling: leading is at 2-loop!

Need 2-loop to generate $b \rightarrow sa$ from aGG

- 1-loop QCD for agg
- 1-loop with W-boson for flavor changing

 m_a [GeV]

New search $B \rightarrow Ka$ *with* **displaced** $a \rightarrow 3\pi$

• Displaced decay (τ ~ns \rightarrow c τ ~cm) is also possible: 2 π [±] reconstruct vertex.

• Very low background due to >1 cm DV.

• Can be done at LHCb

Future Proton Beam Dump Exp and KOTO detector

Next proton beam dump experiments for long-lived axion with lifetime of microsecond.

- Proton beam on fixed target + distant detector

CERN

Kohsaku Tobioka, Florida State University

beam

Last proton beam dump experiment was in '90s. CHARM/NuCal

High intensity GeV+ proton source is at limited labs: CERN, Fermilab, J-PARC, Oak Ridge?

KOTO, T2K Near-Detector **DUNE Near-Detector** FASER, MATHUSLA, SHIP

Next proton beam dump experiments for long-lived axion with lifetime of microsecond.

Projection at KOTO Step-2

Main target at KOTO is inside the solid Long-lived axion signal is colored (pT>mK)

Kohsaku Tobioka, Florida State University

 m_a [GeV]

Pushing the lifetime limit with CMB and BBN

Axion to hadron decays: N_{eff}, BBN and ⁴He

- Neff using CMB bound covers the large mass range. Lifetime >0.1sec [Planck] [2205.11540] D. I. Dunsky, L. J. Hall, **K. Harigaya**
 - Big Bang Nucleosynthesis probes long-lived particles decaying to hadrons. In particular 4He which is determined by neutron abundance.

Past relevant works M. Kawasaki, K. Kohri, T. Moroi [astro-ph/0408426]; Gravitino K. Kohr i[astro-ph/0103411], +Y. Takaesu [1709.01211] Dark photon A. Fradette, M. Pospelov, J. Pradler, A. Ritz 1407.0993 Higgs portal scalar A. Fradette, M. Pospelov 1706.01920 Sterile néutrinos A. Boyarsky, M. Ovchynnikov, O. Ruchayskiy, V. Syvolap 2008.00749

Standard neutron decoupling (\rightarrow ⁴He)

• Neutron weak interaction decouples from the bath at T~0.7MeV (t~1sec).

$$p + e^- \leftrightarrow n + \nu_e$$

Rate is tiny: $n_{\nu,e}\sigma v \sim T^5 G_F^2$ neutron to proton ratio: $n_n/n_p \simeq 1/6$

• Some neutron decays, $n_n/n_p \simeq 1/7$ Neutrons convert to ⁴He at T~70keV

$$Y_P = \frac{\rho_{^4\mathrm{H_e}}}{\rho_{\text{baryon}}} \simeq \frac{2(n_n/n_p)}{1 + n_n/n_p} \simeq 0.2$$

Neutron decoupling with Hadron injection

Standard Rate: $n_{\nu,e}\sigma v \sim T^5 G_F^2 \sim 10^{-26} \text{GeV}$

• Probe down to **0.02sec**

$$p \rightarrow p + \pi^0$$

 $p \rightarrow n + \pi^0 \sim 1 \text{mb}$

$$- \rightarrow n + X \sim 30 \text{mb}$$

$$K_L \rightarrow n(p) \sim 10 \text{mb}$$

Hadrons immediately slow down in the plasma except KL

• Hadrons from axion decays participates in $p \leftrightarrow n$ with high rate ($\sigma \sim f_{\pi}^{-2} \sim 4$ **mb**).

NP Rate: $n_{a \to K} \sigma v \sim (\mathrm{BR}e^{-t_{\mathrm{BBN}}/\tau_a})(T^3/g_*)10\mathrm{mb}$

14 orders larger! ~ 10^{-12} GeV(BR e^{-1s/τ_a})

Importance of KL

- Many hadronic cross sections updated.
- **K**_L was not included or assumed to be thermal. Account K_{L} mom. spectrum from axion decay.

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

Proper partial wave analysis, Coulomb correction, tedious isospin analysis

 Known (old) kaon data to obtain the relevant KL n/p scattering cross sections. Validated!

Preliminary Results

- First study for axion hadronic decays.
- Dominant effect is from K_L due to long lifetime, and boost factor.
- Better than Neff bound, comparable to CMB-S4 projection.

* the updates can be implemented to other particles (sterile v, dark γ, Higgs portal)

Preliminary Results

- First study for axion hadronic decays.
- Dominant effect is from K_L due to long lifetime, and boost factor.
- Better than Neff bound, comparable to CMB-S4 projection.

*the updates can be implemented to other particles (sterile v, dark γ, Higgs portal)

TH Jung, T. Okui, **KT**, J. Wang (in pareparation)

Landscape of heavy axion searches

 m_a [GeV]

Hitoshi, Happy 60th Birthday!!

• IPMU started in 2007.

- Stepped down in 2018.
- 2022- Leading P5!

• In 203x, Hitoshi is ?? [Of course something great and unexpected!]

Thank you for your hard work for the community and for mentoring the younger generation!

