
Shadow Matter

For Hitoshi Fest



A birthday party game for 
Hitoshi

In 2016 I was interviewing for a faculty 
position at IPMU

I asked each interviewer (15 faculty) 
the same question

Match the faculty member to 
their response



Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?

Suitably modified to c. 2016



Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?

“DISASTER! IT WOULD BE A DISASTER! 
Who else can genuinely work with both 

astronomers and string theorists??



“😳 ___________ ohhh thats a good 
question, mmmmmm..”

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?

“DISASTER! IT WOULD BE A DISASTER! 
Who else can genuinely work with both 

astronomers and string theorists??



“He isn’t going to leave.”

“DISASTER! IT WOULD BE A DISASTER! 
Who else can genuinely work with both 

astronomers and string theorists??

“😳 ___________ ohhh thats a good 
question, mmmmmm..”

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



…

“He isn’t going to leave.”

“😳 ___________ ohhh thats a good 
question, mmmmmm..”

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?

“DISASTER! IT WOULD BE A DISASTER! 
Who else can genuinely work with both 

astronomers and string theorists??



…

“DISASTER! IT WOULD BE A DISASTER! 
Who else can genuinely work with both 

astronomers and string theorists??

“He isn’t going to leave.”

End of the 
world 

Avoidance“😳 ___________ ohhh thats a good 
question, mmmmmm..”

Denial

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



# End of 
the world # Avoidance # Denial+ +

Like any good theorist making a 
decision in the face of data…

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



# End of 
the world # Avoidance # Denial+ +
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Like any good theorist making a 
decision in the face of data…

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



End of 
the world  Avoidance
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!  Denial
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!+ +

Like any good theorist making a 
decision in the face of data…
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Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



= IPMU - its science, its culture, its vision - must 
very deeply reflect those elements of Hitoshi 

himself

Like any good theorist making a 
decision in the face of data…

And that must make it a great place to be

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



Like any good theorist making a 
decision in the face of data…

That is exactly what it has been

Thank you, Hitoshi, on your 60th year

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



Like any good theorist making a 
decision in the face of data…

That is exactly what it has been

Thank you, Hitoshi, on your 60th year

(Lesson: always just add errors in 
quadrature)

Q: what would happen if 
Hitoshi stepped down as 
IPMU director tomorrow?



Or: “Shadow Matter”
Tom Melia Kavli IPMU

Based on 2405.06374 with Loris Del Grosso, David E Kaplan, TM, 
Surjeet Rajendran, Vivian Poulin, Tristan L Smith

2305.01798, 2307.09475 Kaplan, TM, Rajendran
And 2204.03043 Anne-Katherine Burns, Kaplan, TM, Rajendran

Cosmological Consequences of 
Unconstrained Gravity and 

Electromagnetism



Classical physics asserts
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Gµ⌫ = Tµ⌫

Maxwell

Einstein
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@µF
µ⌫ = J⌫



Quantum physics described by 
Schrodinger equation 
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From this equation classical physics follows…



Quantum physics described by 
Schrodinger equation 
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From this equation classical physics follows…From this equation classical physics follows…

..in expectation value 

<latexit sha1_base64="uuhsEYyyyMIlUGTiTyNm9j2xWLI="></latexit>

ωt→X̂↑ = i

〈[
Ĥ, X̂

]〉
=

〈
ωĤ

ωP̂

〉

<latexit sha1_base64="k566dmboARSr91WM4aeRTbl54+s="></latexit>

ωt→P̂ ↑ = i

〈[
Ĥ, P̂

]〉
= ↓

〈
ωĤ

ωX̂

〉



A subtlety for gauge theories

Fewer d.o.f. than fields

1. Fewer 2nd order equations for evolution

2. Additional constraint equations on the dof
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gµω
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Gµ⌫ = Tµ⌫
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Compare 

Constraints:
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G0µ = T 0µ

<latexit sha1_base64="AakjGu9w696h9nBlzVciwwdR6RU=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgqsyIqBuhKIi4qmAf0JkOmTRtQ5PMkGSEMnThxl9x40IRt36EO//GTDsLbT0QcjjnXu69J4wZVdpxvq3C0vLK6lpxvbSxubW9Y+/uNVWUSEwaOGKRbIdIEUYFaWiqGWnHkiAeMtIKR1eZ33ogUtFI3OtxTHyOBoL2KUbaSIFd9mIkNUUs8HgCr7tp9jmTC3jbdQK74lSdKeAicXNSATnqgf3l9SKccCI0ZkipjuvE2k+zAZiRSclLFIkRHqEB6RgqECfKT6dHTOChUXqwH0nzhIZT9XdHirhSYx6aSo70UM17mfif10l0/9xPqYgTTQSeDeonDOoIZonAHpUEazY2BGFJza4QD5FEWJvcSiYEd/7kRdI8rrqnVffupFK7zOMogjI4AEfABWegBm5AHTQABo/gGbyCN+vJerHerY9ZacHKe/bBH1ifPzBolyQ=</latexit>

@µF
µ0 = J0

Both dynamics and
Dynamics only

& Initial conditions
<latexit sha1_base64="8W5UVCmwg33FPI0d8/4FIRzABaQ=">AAAB+XicbVDLSgNBEOyNrxhfqx69DAYhXsKuiHoMevEYwTwgCWF20psMmZ1dZmYDYc2fePGgiFf/xJt/4+Rx0MSChqKqm+6uIBFcG8/7dnJr6xubW/ntws7u3v6Be3hU13GqGNZYLGLVDKhGwSXWDDcCm4lCGgUCG8Hwbuo3Rqg0j+WjGSfYiWhf8pAzaqzUdd2ndqI5KXnnbUVlX2DXLXplbwaySvwFKcIC1a771e7FLI1QGiao1i3fS0wno8pwJnBSaKcaE8qGtI8tSyWNUHey2eUTcmaVHgljZUsaMlN/T2Q00nocBbYzomagl72p+J/XSk1408m4TFKDks0XhakgJibTGEiPK2RGjC2hTHF7K2EDqigzNqyCDcFffnmV1C/K/lXZf7gsVm4XceThBE6hBD5cQwXuoQo1YDCCZ3iFNydzXpx352PemnMWM8fwB87nD3v0kus=</latexit>

| (0)i

<latexit sha1_base64="ituNq5QMc+GeituZpaXL86UH9wo=">AAACCHicbVDLSgMxFM3UV62vUZcuDBbBVZkRUTdCURBxVcE+oDMdMmmmDU0yQ5IRytClG3/FjQtF3PoJ7vwbM20X2nog5HDOvdx7T5gwqrTjfFuFhcWl5ZXiamltfWNzy97eaag4lZjUccxi2QqRIowKUtdUM9JKJEE8ZKQZDq5yv/lApKKxuNfDhPgc9QSNKEbaSIG97yVIaopY4PEUXncy83kiHcELeNsxJLDLTsUZA84Td0rKYIpaYH953RinnAiNGVKq7TqJ9rN8CGZkVPJSRRKEB6hH2oYKxInys/EhI3holC6MYmme0HCs/u7IEFdqyENTyZHuq1kvF//z2qmOzv2MiiTVRODJoChlUMcwTwV2qSRYs6EhCEtqdoW4jyTC2mRXMiG4syfPk8ZxxT2tuHcn5erlNI4i2AMH4Ai44AxUwQ2ogTrA4BE8g1fwZj1ZL9a79TEpLVjTnl3wB9bnDyh0mWo=</latexit>

@µF
µ⌫ = J⌫



<latexit sha1_base64="uSrkiJ4YIa4MOk5znZu6kIWT3Og=">AAACAHicbVDLSgMxFM34rPU16sKFm2ARXJUZEXUjFF3oskJf0BlLJk3b0CQz5CGUYTb+ihsXirj1M9z5N6btINp64MLJOfeSe0+UMKq05305C4tLyyurhbXi+sbm1ra7s9tQsZGY1HHMYtmKkCKMClLXVDPSSiRBPGKkGQ2vx37zgUhFY1HTo4SEHPUF7VGMtJU67v7NfRpwEwiTwUtY+3l03JJX9iaA88TPSQnkqHbcz6AbY8OJ0Jghpdq+l+gwRVJTzEhWDIwiCcJD1CdtSwXiRIXp5IAMHlmlC3uxtCU0nKi/J1LElRrxyHZypAdq1huL/3lto3sXYUpFYjQRePpRzzCoYzhOA3apJFizkSUIS2p3hXiAJMLaZla0IfizJ8+TxknZPyv7d6elylUeRwEcgENwDHxwDirgFlRBHWCQgSfwAl6dR+fZeXPep60LTj6zB/7A+fgGdx2WVQ==</latexit>

Gµ⌫ = Tµ⌫

<latexit sha1_base64="p3e9fu25VqfF6NAKH6Lj+lY5CTE=">AAACK3icbVDLSsNAFJ34rPUVdelmsAiuSiKiboRSEboRKtgHNCFMppN26GQSZiZCifkfN/6KC134wK3/4aQNoq0HBg7nnMude/yYUaks691YWFxaXlktrZXXNza3ts2d3baMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFl7nfuiJA04rdqHBM3RANOA4qR0pJn1il0AoFw6sRIKIpY9sOgyuC9E0udEIgPGIEXsOGlV9czsmdWrKo1AZwndkEqoEDTM5+dfoSTkHCFGZKyZ1uxctN8K2YkKzuJJDHCIzQgPU05Col008mtGTzUSh8GkdCPKzhRf0+kKJRyHPo6GSI1lLNeLv7n9RIVnLsp5XGiCMfTRUGiW4hgXhzsU0GwYmNNEBZU/xXiIdLVKV1vWZdgz548T9rHVfu0at+cVGr1oo4S2AcH4AjY4AzUQAM0QQtg8ACewCt4Mx6NF+PD+JxGF4xiZg/8gfH1DcnDp/w=</latexit>

i
@

@t
| i = HEM | i

<latexit sha1_base64="5u839w+pDp2GO+Smsy91+mUIJn8=">AAACK3icbVDLSsNAFJ34rPUVdelmsAiuSiKiboRSF3ZZxT6gCWEynbRDJ5MwMxFKzP+48Vdc6MIHbv0PJ20QbT0wcDjnXO7c48eMSmVZ78bC4tLyympprby+sbm1be7stmWUCExaOGKR6PpIEkY5aSmqGOnGgqDQZ6Tjjy5zv3NHhKQRv1XjmLghGnAaUIyUljyzTqETCIRTJ0ZCUcSyHwZVBu+dWOqEQHzACLyADS+9upmRPbNiVa0J4DyxC1IBBZqe+ez0I5yEhCvMkJQ924qVm+ZbMSNZ2UkkiREeoQHpacpRSKSbTm7N4KFW+jCIhH5cwYn6eyJFoZTj0NfJEKmhnPVy8T+vl6jg3E0pjxNFOJ4uChLdQgTz4mCfCoIVG2uCsKD6rxAPka5O6XrLugR79uR50j6u2qdV+/qkUqsXdZTAPjgAR8AGZ6AGGqAJWgCDB/AEXsGb8Wi8GB/G5zS6YBQze+APjK9v1MqoAw==</latexit>

i
@

@t
| i = HGR| i

Compare 

Constraints:
Both dynamics and

Dynamics only

<latexit sha1_base64="8W5UVCmwg33FPI0d8/4FIRzABaQ=">AAAB+XicbVDLSgNBEOyNrxhfqx69DAYhXsKuiHoMevEYwTwgCWF20psMmZ1dZmYDYc2fePGgiFf/xJt/4+Rx0MSChqKqm+6uIBFcG8/7dnJr6xubW/ntws7u3v6Be3hU13GqGNZYLGLVDKhGwSXWDDcCm4lCGgUCG8Hwbuo3Rqg0j+WjGSfYiWhf8pAzaqzUdd2ndqI5KXnnbUVlX2DXLXplbwaySvwFKcIC1a771e7FLI1QGiao1i3fS0wno8pwJnBSaKcaE8qGtI8tSyWNUHey2eUTcmaVHgljZUsaMlN/T2Q00nocBbYzomagl72p+J/XSk1408m4TFKDks0XhakgJibTGEiPK2RGjC2hTHF7K2EDqigzNqyCDcFffnmV1C/K/lXZf7gsVm4XceThBE6hBD5cQwXuoQo1YDCCZ3iFNydzXpx352PemnMWM8fwB87nD3v0kus=</latexit>

| (0)i

<latexit sha1_base64="ituNq5QMc+GeituZpaXL86UH9wo=">AAACCHicbVDLSgMxFM3UV62vUZcuDBbBVZkRUTdCURBxVcE+oDMdMmmmDU0yQ5IRytClG3/FjQtF3PoJ7vwbM20X2nog5HDOvdx7T5gwqrTjfFuFhcWl5ZXiamltfWNzy97eaag4lZjUccxi2QqRIowKUtdUM9JKJEE8ZKQZDq5yv/lApKKxuNfDhPgc9QSNKEbaSIG97yVIaopY4PEUXncy83kiHcELeNsxJLDLTsUZA84Td0rKYIpaYH953RinnAiNGVKq7TqJ9rN8CGZkVPJSRRKEB6hH2oYKxInys/EhI3holC6MYmme0HCs/u7IEFdqyENTyZHuq1kvF//z2qmOzv2MiiTVRODJoChlUMcwTwV2qSRYs6EhCEtqdoW4jyTC2mRXMiG4syfPk8ZxxT2tuHcn5erlNI4i2AMH4Ai44AxUwQ2ogTrA4BE8g1fwZj1ZL9a79TEpLVjTnl3wB9bnDyh0mWo=</latexit>

@µF
µ⌫ = J⌫

<latexit sha1_base64="Tweo9BHUj97j6N5UpJXaEbR2atU=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBFclURE3QhFEVxWsA9oQphMJu3QyUyYmQglZOfGX3HjQhG3/oI7/8Zpm4W2HrhwOOde7r0nTBlV2nG+rYXFpeWV1cpadX1jc2vb3tltK5FJTFpYMCG7IVKEUU5ammpGuqkkKAkZ6YTD67HfeSBSUcHv9SglfoL6nMYU I22kwD7wOAoZ8nAkdO6FMbwp4CX05EAEOR4UgV1z6s4EcJ64JamBEs3A/vIigbOEcI0ZUqrnOqn2cyQ1xYwUVS9TJEV4iPqkZyhHCVF+PvmjgEdGiWAspCmu4UT9PZGjRKlREprOBOmBmvXG4n9eL9PxhZ9TnmaacDxdFGcMagHHocCISoI1GxmCsKTmVogHSCKsTXRVE4I7+/I8aZ/U3bO6e3daa1yVcVTAPjgEx8AF56ABbkETtAAGj+AZvII368l6sd6tj2nrglXO7IE/sD5/AGRNmQI=</latexit>r ·E = ⇢ch

<latexit sha1_base64="eTwG0G582+qnn5u+cBOJ78k+NC4="></latexit>

G00 =
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& Initial conditions



<latexit sha1_base64="uSrkiJ4YIa4MOk5znZu6kIWT3Og=">AAACAHicbVDLSgMxFM34rPU16sKFm2ARXJUZEXUjFF3oskJf0BlLJk3b0CQz5CGUYTb+ihsXirj1M9z5N6btINp64MLJOfeSe0+UMKq05305C4tLyyurhbXi+sbm1ra7s9tQsZGY1HHMYtmKkCKMClLXVDPSSiRBPGKkGQ2vx37zgUhFY1HTo4SEHPUF7VGMtJU67v7NfRpwEwiTwUtY+3l03JJX9iaA88TPSQnkqHbcz6AbY8OJ0Jghpdq+l+gwRVJTzEhWDIwiCcJD1CdtSwXiRIXp5IAMHlmlC3uxtCU0nKi/J1LElRrxyHZypAdq1huL/3lto3sXYUpFYjQRePpRzzCoYzhOA3apJFizkSUIS2p3hXiAJMLaZla0IfizJ8+TxknZPyv7d6elylUeRwEcgENwDHxwDirgFlRBHWCQgSfwAl6dR+fZeXPep60LTj6zB/7A+fgGdx2WVQ==</latexit>

Gµ⌫ = Tµ⌫

<latexit sha1_base64="p3e9fu25VqfF6NAKH6Lj+lY5CTE=">AAACK3icbVDLSsNAFJ34rPUVdelmsAiuSiKiboRSEboRKtgHNCFMppN26GQSZiZCifkfN/6KC134wK3/4aQNoq0HBg7nnMude/yYUaks691YWFxaXlktrZXXNza3ts2d3baMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFl7nfuiJA04rdqHBM3RANOA4qR0pJn1il0AoFw6sRIKIpY9sOgyuC9E0udEIgPGIEXsOGlV9czsmdWrKo1AZwndkEqoEDTM5+dfoSTkHCFGZKyZ1uxctN8K2YkKzuJJDHCIzQgPU05Col008mtGTzUSh8GkdCPKzhRf0+kKJRyHPo6GSI1lLNeLv7n9RIVnLsp5XGiCMfTRUGiW4hgXhzsU0GwYmNNEBZU/xXiIdLVKV1vWZdgz548T9rHVfu0at+cVGr1oo4S2AcH4AjY4AzUQAM0QQtg8ACewCt4Mx6NF+PD+JxGF4xiZg/8gfH1DcnDp/w=</latexit>

i
@

@t
| i = HEM | i

<latexit sha1_base64="5u839w+pDp2GO+Smsy91+mUIJn8=">AAACK3icbVDLSsNAFJ34rPUVdelmsAiuSiKiboRSF3ZZxT6gCWEynbRDJ5MwMxFKzP+48Vdc6MIHbv0PJ20QbT0wcDjnXO7c48eMSmVZ78bC4tLyympprby+sbm1be7stmWUCExaOGKR6PpIEkY5aSmqGOnGgqDQZ6Tjjy5zv3NHhKQRv1XjmLghGnAaUIyUljyzTqETCIRTJ0ZCUcSyHwZVBu+dWOqEQHzACLyADS+9upmRPbNiVa0J4DyxC1IBBZqe+ez0I5yEhCvMkJQ924qVm+ZbMSNZ2UkkiREeoQHpacpRSKSbTm7N4KFW+jCIhH5cwYn6eyJFoZTj0NfJEKmhnPVy8T+vl6jg3E0pjxNFOJ4uChLdQgTz4mCfCoIVG2uCsKD6rxAPka5O6XrLugR79uR50j6u2qdV+/qkUqsXdZTAPjgAR8AGZ6AGGqAJWgCDB/AEXsGb8Wi8GB/G5zS6YBQze+APjK9v1MqoAw==</latexit>

i
@

@t
| i = HGR| i

Compare 

Constraints:
Both dynamics and

Dynamics only

<latexit sha1_base64="8W5UVCmwg33FPI0d8/4FIRzABaQ=">AAAB+XicbVDLSgNBEOyNrxhfqx69DAYhXsKuiHoMevEYwTwgCWF20psMmZ1dZmYDYc2fePGgiFf/xJt/4+Rx0MSChqKqm+6uIBFcG8/7dnJr6xubW/ntws7u3v6Be3hU13GqGNZYLGLVDKhGwSXWDDcCm4lCGgUCG8Hwbuo3Rqg0j+WjGSfYiWhf8pAzaqzUdd2ndqI5KXnnbUVlX2DXLXplbwaySvwFKcIC1a771e7FLI1QGiao1i3fS0wno8pwJnBSaKcaE8qGtI8tSyWNUHey2eUTcmaVHgljZUsaMlN/T2Q00nocBbYzomagl72p+J/XSk1408m4TFKDks0XhakgJibTGEiPK2RGjC2hTHF7K2EDqigzNqyCDcFffnmV1C/K/lXZf7gsVm4XceThBE6hBD5cQwXuoQo1YDCCZ3iFNydzXpx352PemnMWM8fwB87nD3v0kus=</latexit>

| (0)i

<latexit sha1_base64="ituNq5QMc+GeituZpaXL86UH9wo=">AAACCHicbVDLSgMxFM3UV62vUZcuDBbBVZkRUTdCURBxVcE+oDMdMmmmDU0yQ5IRytClG3/FjQtF3PoJ7vwbM20X2nog5HDOvdx7T5gwqrTjfFuFhcWl5ZXiamltfWNzy97eaag4lZjUccxi2QqRIowKUtdUM9JKJEE8ZKQZDq5yv/lApKKxuNfDhPgc9QSNKEbaSIG97yVIaopY4PEUXncy83kiHcELeNsxJLDLTsUZA84Td0rKYIpaYH953RinnAiNGVKq7TqJ9rN8CGZkVPJSRRKEB6hH2oYKxInys/EhI3holC6MYmme0HCs/u7IEFdqyENTyZHuq1kvF//z2qmOzv2MiiTVRODJoChlUMcwTwV2qSRYs6EhCEtqdoW4jyTC2mRXMiG4syfPk8ZxxT2tuHcn5erlNI4i2AMH4Ai44AxUwQ2ogTrA4BE8g1fwZj1ZL9a79TEpLVjTnl3wB9bnDyh0mWo=</latexit>

@µF
µ⌫ = J⌫

<latexit sha1_base64="Tweo9BHUj97j6N5UpJXaEbR2atU=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBFclURE3QhFEVxWsA9oQphMJu3QyUyYmQglZOfGX3HjQhG3/oI7/8Zpm4W2HrhwOOde7r0nTBlV2nG+rYXFpeWV1cpadX1jc2vb3tltK5FJTFpYMCG7IVKEUU5ammpGuqkkKAkZ6YTD67HfeSBSUcHv9SglfoL6nMYU I22kwD7wOAoZ8nAkdO6FMbwp4CX05EAEOR4UgV1z6s4EcJ64JamBEs3A/vIigbOEcI0ZUqrnOqn2cyQ1xYwUVS9TJEV4iPqkZyhHCVF+PvmjgEdGiWAspCmu4UT9PZGjRKlREprOBOmBmvXG4n9eL9PxhZ9TnmaacDxdFGcMagHHocCISoI1GxmCsKTmVogHSCKsTXRVE4I7+/I8aZ/U3bO6e3daa1yVcVTAPjgEx8AF56ABbkETtAAGj+AZvII368l6sd6tj2nrglXO7IE/sD5/AGRNmQI=</latexit>r ·E = ⇢ch

<latexit sha1_base64="eTwG0G582+qnn5u+cBOJ78k+NC4="></latexit>

G00 =
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Exploring a choice

<latexit sha1_base64="5u839w+pDp2GO+Smsy91+mUIJn8=">AAACK3icbVDLSsNAFJ34rPUVdelmsAiuSiKiboRSF3ZZxT6gCWEynbRDJ5MwMxFKzP+48Vdc6MIHbv0PJ20QbT0wcDjnXO7c48eMSmVZ78bC4tLyympprby+sbm1be7stmWUCExaOGKR6PpIEkY5aSmqGOnGgqDQZ6Tjjy5zv3NHhKQRv1XjmLghGnAaUIyUljyzTqETCIRTJ0ZCUcSyHwZVBu+dWOqEQHzACLyADS+9upmRPbNiVa0J4DyxC1IBBZqe+ez0I5yEhCvMkJQ924qVm+ZbMSNZ2UkkiREeoQHpacpRSKSbTm7N4KFW+jCIhH5cwYn6eyJFoZTj0NfJEKmhnPVy8T+vl6jg3E0pjxNFOJ4uChLdQgTz4mCfCoIVG2uCsKD6rxAPka5O6XrLugR79uR50j6u2qdV+/qkUqsXdZTAPjgAR8AGZ6AGGqAJWgCDB/AEXsGb8Wi8GB/G5zS6YBQze+APjK9v1MqoAw==</latexit>

i
@

@t
| i = HGR| i

<latexit sha1_base64="p3e9fu25VqfF6NAKH6Lj+lY5CTE=">AAACK3icbVDLSsNAFJ34rPUVdelmsAiuSiKiboRSEboRKtgHNCFMppN26GQSZiZCifkfN/6KC134wK3/4aQNoq0HBg7nnMude/yYUaks691YWFxaXlktrZXXNza3ts2d3baMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/NFl7nfuiJA04rdqHBM3RANOA4qR0pJn1il0AoFw6sRIKIpY9sOgyuC9E0udEIgPGIEXsOGlV9czsmdWrKo1AZwndkEqoEDTM5+dfoSTkHCFGZKyZ1uxctN8K2YkKzuJJDHCIzQgPU05Col008mtGTzUSh8GkdCPKzhRf0+kKJRyHPo6GSI1lLNeLv7n9RIVnLsp5XGiCMfTRUGiW4hgXhzsU0GwYmNNEBZU/xXiIdLVKV1vWZdgz548T9rHVfu0at+cVGr1oo4S2AcH4AjY4AzUQAM0QQtg8ACewCt4Mx6NF+PD+JxGF4xiZg/8gfH1DcnDp/w=</latexit>

i
@

@t
| i = HEM | i Once we write down a 

Hamiltonian, we can evolve 
what we like

<latexit sha1_base64="8W5UVCmwg33FPI0d8/4FIRzABaQ=">AAAB+XicbVDLSgNBEOyNrxhfqx69DAYhXsKuiHoMevEYwTwgCWF20psMmZ1dZmYDYc2fePGgiFf/xJt/4+Rx0MSChqKqm+6uIBFcG8/7dnJr6xubW/ntws7u3v6Be3hU13GqGNZYLGLVDKhGwSXWDDcCm4lCGgUCG8Hwbuo3Rqg0j+WjGSfYiWhf8pAzaqzUdd2ndqI5KXnnbUVlX2DXLXplbwaySvwFKcIC1a771e7FLI1QGiao1i3fS0wno8pwJnBSaKcaE8qGtI8tSyWNUHey2eUTcmaVHgljZUsaMlN/T2Q00nocBbYzomagl72p+J/XSk1408m4TFKDks0XhakgJibTGEiPK2RGjC2hTHF7K2EDqigzNqyCDcFffnmV1C/K/lXZf7gsVm4XceThBE6hBD5cQwXuoQo1YDCCZ3iFNydzXpx352PemnMWM8fwB87nD3v0kus=</latexit>

| (0)i
State of lowest energy (highest symmetry) 
reproduces conventional classical limit

Not the only choice



Electromagnetism

That is, the state looks like the time evolution of a system where in addition to the known
current Jµ, there is an additional “dark charge” J

d

0 that is somehow unmovable. The in-
teresting fact about a state that violates Gauss’ law is that even at the classical level it is
described in terms of the gauge invariant observable ~E - there is thus no logical issue involved
in time evolving such a state.

At the classical level, we would reject such states simply because we believe in Gauss’

law and would thus require
⇣
~r · ~E � J0

⌘
= 0. But, classical mechanics is not the correct

description of nature - the underlying theory is quantum mechanics and classical physics is
a limit of quantum mechanics. The key question that we need to ask is if Gauss’ law follows
from quantum mechanics. We argue that it does not. Instead, we show that quantum
mechanics allows for the existence of gauge invariant states of electromagnetism that violate
Gauss’ law. At the classical level, the time evolution of these states would be identical
to that of the unmovable “dark charge” J

d

0 described in (6) - but there is no new physics
associated with J

d

0 . It is simply a state of electromagnetism. Further, these states can also
be consistently coupled to gravity.

Why is Gauss’s law not true in quantum mechanics but naively appears to be true in
classical electromagnetism? As a first peek at this issue, observe the following. In classical
physics, we obtained Maxwell’s equations by varying the action SEM along four independent
variations of the potential Aµ. But, due to gauge redundancy, there aren’t four independent
variations of Aµ. By Stokes’ theorem, any potential Aµ can be decomposed as Aµ = Kµ+@µ↵

where Kµ is divergence-less i.e. @µ
Kµ = 0 and thus only contains three degrees of freedom.

Write the classical action SEM in terms of Kµ and ↵ instead of Aµ. Due to the gauge
invariance of the action SEM under the gauge transformations Aµ ! Aµ + @µ↵ and the
associated covariant transformations on LJ , the action:

SEM =

Z
d
4
xLEM (Aµ, @⌫Aµ) =

Z
d
4
xLEM (Kµ, @⌫Kµ) (7)

is only a function of Kµ. But since the divergence-less four vector Kµ only has 3 degrees
of freedom, we do not have four independent variations to obtain all of the equations of
Maxwell.

The reader will observe that in writing (7), we have e↵ectively picked the Lorenz gauge
where we set @

µ
Aµ = 0 and as a consequence, we lost an equation of motion. But, this is

a general feature of any gauge fixing procedure where the degree of freedom that is being
fixed can no longer be varied. The definition of the quantum theory, either at the level of
the Hamiltonian or the path integral, requires us to pick a gauge in order to define operators
and states. As a result, some of the naive equations that one might obtain in the classical
theory are no longer true at the quantum level. This results in loosening restrictions on the
allowed quantum states of the theory permitting states such as (6) that violate Gauss’s law.
In the following sections, we will display this in a variety of gauges.

3 Weyl Gauge

To quantize electromagnetism in the Weyl gauge, the following procedure is adopted [4]
to specify the operators, Hamiltonian and physical states. We set A0 = 0. The spatial
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where ĤJ is the Hamiltonian of the current ~J . If a quantum state | i obeys the Schrödinger
equation

i
@| i
@t

= ĤW | i (11)

what equations of motion are automatically obeyed by the expectation values of various
operators such as h | ~E| i?

To answer this, let us naively follow the Schwinger-Dyson procedure and construct the
path integral that solves (11):

T = h
⇣
0, ~Af

⌘
|T (t2; t1) |

⇣
0, ~Ai

⌘
i =

Z ~A(t2)= ~Af

~A(t1)= ~Ai
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i
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t1

d
4
x (LEM��A0) (12)

where the Lagrange multiplier � enforces the Weyl gauge A0 = 0. This path integral yields

the transition matrix element for the field basis state |
⇣
0, ~Ai

⌘
i at time t1 to evolve to

|
⇣
0, ~Af

⌘
i at time t2. This transition matrix element (12) should be invariant when we

compute this path integral with a variable redefinition Aµ ! Aµ + �Aµ with �Aµ vanishing
at the boundaries. This yields a set of Schwinger-Dyson equations which show how the
classical field equations arise as identities automatically obeyed by the expectation values of
various field operators when the quantum state evolves as per (12). One can check that when
this procedure is applied to the spatial variations �Ai, one obtains the result that Ampere’s
law is obeyed by the expectation values of the quantum operators. But, for the variation
�A0, this yields the equation:

h |~r · ~E � J0 + �| i = 0 (13)

This is not an equation of motion or a constraint on the physical state | i - instead, it
describes how the unphysical Lagrange multiplier � evolves in the path integral to maintain
the gauge A0 = 0. Thus Gauss’s law does not immediately follow from the quantum Hamil-
tonian ĤW . This point is well known [4]. The origin of Gauss’s law in the Weyl gauge is tied
to the elimination of residual spatial gauge transformations in the theory. The gauge choice
A0 = 0 does not eliminate all the gauge freedom in the theory - we still need to identify
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0)] = �i � (x� x0) �jj0 (9)

The Hamiltonian constructed from these operators is:
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All the above produces Ampere’s law in expectation (dynamics)

quantum states | ~Ai that are related to each other by purely spatial gauge transformations:
| ~Ai ⌘ | ~A + ~r↵ (x)i. The path integral (12) is not gauge invariant under these spatial
gauge transformations. To rectify this problem, the physical Hilbert space of the theory
is restricted so that the projection of the time evolution operator (12) onto this restricted
Hilbert space leads to gauge invariant physics.

Let us see how this works. We want the physics of the states | ~Ai to be identical to that
of the states | ~A + ~r↵i. Observe that these spatial gauge transformations are generated

by the operator ~r · ~̂E � Ĵ0. Thus, under a spatial gauge transformation, the eigenstates
of this operator will transform with an overall, physically irrelevant, phase. Now, consider

the physics of a subspace of eigenstates of ~r · ~̂E � Ĵ0 with the same eigenvalue. Since the

operator
⇣
~r · ~̂E � Ĵ0

⌘
commutes with ĤW , the time evolution of an initial state in this

eigen-subspace will remain in the same eigen-subspace. Together, these facts imply that the
physics of this eigen-subspace is invariant under spatial gauge transformations.

In the traditional quantization procedure [4], the physical states | EMi are taken to

be eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with zero eigenvalue. In this eigen-subspace, Gauss’s law is

preserved. But, this is a choice. An eigen sub-space of eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with a

non-zero eigenvalue J
d

0 (x):
⇣
~r · ~̂E � Ĵ0

⌘
| EMi = J

d

0 (x) | EMi (14)

also leads to gauge invariant physics. For these states, Gauss’s law is not obeyed. Instead,
the time evolution is such that:

dh EM |
⇣
~r · ~̂E � Ĵ0

⌘
| EMi

dt
= 0 (15)

which is exactly the form of (6).
We thus see that there are gauge invariant quantum states that violate Gauss’s law and

there are no di�culties in time evolving these states. The initial quantum state of the
universe could have been a state where Gauss’s law was preserved i.e. the state happened

to be a state that was an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with eigenvalue zero. But, it could just

as easily have been an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with a non-zero eigenvalue Jd

0 (x). In this

case, Gauss’s law would be violated. It is a matter for experiment to decide which of these
scenarios is realized in our universe. Note that in states with J

d

0 (x) 6= 0, the initial state
is not the vacuum and it thus picks a rest frame. The state thus breaks Lorentz symmetry.
This is similar to the fact that our universe also picks a cosmic rest frame, breaking Lorentz
symmetry.

4 Coulomb Gauge

In the Weyl gauge, we removed gauge redundancies in two steps - first, by setting the operator
A0 = 0 and second, by restricting the Hilbert space of the theory by identifying quantum
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Gauss’ law needs a supplement:



Electromagnetism

That is, the state looks like the time evolution of a system where in addition to the known
current Jµ, there is an additional “dark charge” J

d

0 that is somehow unmovable. The in-
teresting fact about a state that violates Gauss’ law is that even at the classical level it is
described in terms of the gauge invariant observable ~E - there is thus no logical issue involved
in time evolving such a state.

At the classical level, we would reject such states simply because we believe in Gauss’

law and would thus require
⇣
~r · ~E � J0

⌘
= 0. But, classical mechanics is not the correct

description of nature - the underlying theory is quantum mechanics and classical physics is
a limit of quantum mechanics. The key question that we need to ask is if Gauss’ law follows
from quantum mechanics. We argue that it does not. Instead, we show that quantum
mechanics allows for the existence of gauge invariant states of electromagnetism that violate
Gauss’ law. At the classical level, the time evolution of these states would be identical
to that of the unmovable “dark charge” J

d

0 described in (6) - but there is no new physics
associated with J

d

0 . It is simply a state of electromagnetism. Further, these states can also
be consistently coupled to gravity.

Why is Gauss’s law not true in quantum mechanics but naively appears to be true in
classical electromagnetism? As a first peek at this issue, observe the following. In classical
physics, we obtained Maxwell’s equations by varying the action SEM along four independent
variations of the potential Aµ. But, due to gauge redundancy, there aren’t four independent
variations of Aµ. By Stokes’ theorem, any potential Aµ can be decomposed as Aµ = Kµ+@µ↵

where Kµ is divergence-less i.e. @µ
Kµ = 0 and thus only contains three degrees of freedom.

Write the classical action SEM in terms of Kµ and ↵ instead of Aµ. Due to the gauge
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where ĤJ is the Hamiltonian of the current ~J . If a quantum state | i obeys the Schrödinger
equation

i
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@t

= ĤW | i (11)

what equations of motion are automatically obeyed by the expectation values of various
operators such as h | ~E| i?

To answer this, let us naively follow the Schwinger-Dyson procedure and construct the
path integral that solves (11):
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where the Lagrange multiplier � enforces the Weyl gauge A0 = 0. This path integral yields

the transition matrix element for the field basis state |
⇣
0, ~Ai

⌘
i at time t1 to evolve to

|
⇣
0, ~Af

⌘
i at time t2. This transition matrix element (12) should be invariant when we

compute this path integral with a variable redefinition Aµ ! Aµ + �Aµ with �Aµ vanishing
at the boundaries. This yields a set of Schwinger-Dyson equations which show how the
classical field equations arise as identities automatically obeyed by the expectation values of
various field operators when the quantum state evolves as per (12). One can check that when
this procedure is applied to the spatial variations �Ai, one obtains the result that Ampere’s
law is obeyed by the expectation values of the quantum operators. But, for the variation
�A0, this yields the equation:

h |~r · ~E � J0 + �| i = 0 (13)

This is not an equation of motion or a constraint on the physical state | i - instead, it
describes how the unphysical Lagrange multiplier � evolves in the path integral to maintain
the gauge A0 = 0. Thus Gauss’s law does not immediately follow from the quantum Hamil-
tonian ĤW . This point is well known [4]. The origin of Gauss’s law in the Weyl gauge is tied
to the elimination of residual spatial gauge transformations in the theory. The gauge choice
A0 = 0 does not eliminate all the gauge freedom in the theory - we still need to identify
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classical field equations arise as identities automatically obeyed by the expectation values of
various field operators when the quantum state evolves as per (12). One can check that when
this procedure is applied to the spatial variations �Ai, one obtains the result that Ampere’s
law is obeyed by the expectation values of the quantum operators. But, for the variation
�A0, this yields the equation:

h |~r · ~E � J0 + �| i = 0 (13)

This is not an equation of motion or a constraint on the physical state | i - instead, it
describes how the unphysical Lagrange multiplier � evolves in the path integral to maintain
the gauge A0 = 0. Thus Gauss’s law does not immediately follow from the quantum Hamil-
tonian ĤW . This point is well known [4]. The origin of Gauss’s law in the Weyl gauge is tied
to the elimination of residual spatial gauge transformations in the theory. The gauge choice
A0 = 0 does not eliminate all the gauge freedom in the theory - we still need to identify
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quantum states | ~Ai that are related to each other by purely spatial gauge transformations:
| ~Ai ⌘ | ~A + ~r↵ (x)i. The path integral (12) is not gauge invariant under these spatial
gauge transformations. To rectify this problem, the physical Hilbert space of the theory
is restricted so that the projection of the time evolution operator (12) onto this restricted
Hilbert space leads to gauge invariant physics.

Let us see how this works. We want the physics of the states | ~Ai to be identical to that
of the states | ~A + ~r↵i. Observe that these spatial gauge transformations are generated

by the operator ~r · ~̂E � Ĵ0. Thus, under a spatial gauge transformation, the eigenstates
of this operator will transform with an overall, physically irrelevant, phase. Now, consider

the physics of a subspace of eigenstates of ~r · ~̂E � Ĵ0 with the same eigenvalue. Since the

operator
⇣
~r · ~̂E � Ĵ0

⌘
commutes with ĤW , the time evolution of an initial state in this

eigen-subspace will remain in the same eigen-subspace. Together, these facts imply that the
physics of this eigen-subspace is invariant under spatial gauge transformations.

In the traditional quantization procedure [4], the physical states | EMi are taken to

be eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with zero eigenvalue. In this eigen-subspace, Gauss’s law is

preserved. But, this is a choice. An eigen sub-space of eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with a

non-zero eigenvalue J
d

0 (x):
⇣
~r · ~̂E � Ĵ0

⌘
| EMi = J

d

0 (x) | EMi (14)

also leads to gauge invariant physics. For these states, Gauss’s law is not obeyed. Instead,
the time evolution is such that:

dh EM |
⇣
~r · ~̂E � Ĵ0

⌘
| EMi

dt
= 0 (15)

which is exactly the form of (6).
We thus see that there are gauge invariant quantum states that violate Gauss’s law and

there are no di�culties in time evolving these states. The initial quantum state of the
universe could have been a state where Gauss’s law was preserved i.e. the state happened

to be a state that was an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with eigenvalue zero. But, it could just

as easily have been an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with a non-zero eigenvalue Jd

0 (x). In this

case, Gauss’s law would be violated. It is a matter for experiment to decide which of these
scenarios is realized in our universe. Note that in states with J

d

0 (x) 6= 0, the initial state
is not the vacuum and it thus picks a rest frame. The state thus breaks Lorentz symmetry.
This is similar to the fact that our universe also picks a cosmic rest frame, breaking Lorentz
symmetry.

4 Coulomb Gauge

In the Weyl gauge, we removed gauge redundancies in two steps - first, by setting the operator
A0 = 0 and second, by restricting the Hilbert space of the theory by identifying quantum
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Gauss’ law needs a supplement:

Gauss’ law operator 
commutes with H

All the above produces Ampere’s law in expectation (dynamics)



Electromagnetism

That is, the state looks like the time evolution of a system where in addition to the known
current Jµ, there is an additional “dark charge” J

d

0 that is somehow unmovable. The in-
teresting fact about a state that violates Gauss’ law is that even at the classical level it is
described in terms of the gauge invariant observable ~E - there is thus no logical issue involved
in time evolving such a state.

At the classical level, we would reject such states simply because we believe in Gauss’

law and would thus require
⇣
~r · ~E � J0

⌘
= 0. But, classical mechanics is not the correct

description of nature - the underlying theory is quantum mechanics and classical physics is
a limit of quantum mechanics. The key question that we need to ask is if Gauss’ law follows
from quantum mechanics. We argue that it does not. Instead, we show that quantum
mechanics allows for the existence of gauge invariant states of electromagnetism that violate
Gauss’ law. At the classical level, the time evolution of these states would be identical
to that of the unmovable “dark charge” J

d

0 described in (6) - but there is no new physics
associated with J

d

0 . It is simply a state of electromagnetism. Further, these states can also
be consistently coupled to gravity.

Why is Gauss’s law not true in quantum mechanics but naively appears to be true in
classical electromagnetism? As a first peek at this issue, observe the following. In classical
physics, we obtained Maxwell’s equations by varying the action SEM along four independent
variations of the potential Aµ. But, due to gauge redundancy, there aren’t four independent
variations of Aµ. By Stokes’ theorem, any potential Aµ can be decomposed as Aµ = Kµ+@µ↵

where Kµ is divergence-less i.e. @µ
Kµ = 0 and thus only contains three degrees of freedom.

Write the classical action SEM in terms of Kµ and ↵ instead of Aµ. Due to the gauge
invariance of the action SEM under the gauge transformations Aµ ! Aµ + @µ↵ and the
associated covariant transformations on LJ , the action:

SEM =

Z
d
4
xLEM (Aµ, @⌫Aµ) =

Z
d
4
xLEM (Kµ, @⌫Kµ) (7)

is only a function of Kµ. But since the divergence-less four vector Kµ only has 3 degrees
of freedom, we do not have four independent variations to obtain all of the equations of
Maxwell.

The reader will observe that in writing (7), we have e↵ectively picked the Lorenz gauge
where we set @

µ
Aµ = 0 and as a consequence, we lost an equation of motion. But, this is

a general feature of any gauge fixing procedure where the degree of freedom that is being
fixed can no longer be varied. The definition of the quantum theory, either at the level of
the Hamiltonian or the path integral, requires us to pick a gauge in order to define operators
and states. As a result, some of the naive equations that one might obtain in the classical
theory are no longer true at the quantum level. This results in loosening restrictions on the
allowed quantum states of the theory permitting states such as (6) that violate Gauss’s law.
In the following sections, we will display this in a variety of gauges.

3 Weyl Gauge

To quantize electromagnetism in the Weyl gauge, the following procedure is adopted [4]
to specify the operators, Hamiltonian and physical states. We set A0 = 0. The spatial
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[Âj (x) , ⇧̂j0 (x
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Using ⇧j = �Ej, we have
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◆
(10)

where ĤJ is the Hamiltonian of the current ~J . If a quantum state | i obeys the Schrödinger
equation

i
@| i
@t

= ĤW | i (11)

what equations of motion are automatically obeyed by the expectation values of various
operators such as h | ~E| i?

To answer this, let us naively follow the Schwinger-Dyson procedure and construct the
path integral that solves (11):

T = h
⇣
0, ~Af

⌘
|T (t2; t1) |

⇣
0, ~Ai

⌘
i =

Z ~A(t2)= ~Af

~A(t1)= ~Ai

DAD� e
i
R t2
t1

d
4
x (LEM��A0) (12)

where the Lagrange multiplier � enforces the Weyl gauge A0 = 0. This path integral yields

the transition matrix element for the field basis state |
⇣
0, ~Ai

⌘
i at time t1 to evolve to

|
⇣
0, ~Af

⌘
i at time t2. This transition matrix element (12) should be invariant when we

compute this path integral with a variable redefinition Aµ ! Aµ + �Aµ with �Aµ vanishing
at the boundaries. This yields a set of Schwinger-Dyson equations which show how the
classical field equations arise as identities automatically obeyed by the expectation values of
various field operators when the quantum state evolves as per (12). One can check that when
this procedure is applied to the spatial variations �Ai, one obtains the result that Ampere’s
law is obeyed by the expectation values of the quantum operators. But, for the variation
�A0, this yields the equation:

h |~r · ~E � J0 + �| i = 0 (13)

This is not an equation of motion or a constraint on the physical state | i - instead, it
describes how the unphysical Lagrange multiplier � evolves in the path integral to maintain
the gauge A0 = 0. Thus Gauss’s law does not immediately follow from the quantum Hamil-
tonian ĤW . This point is well known [4]. The origin of Gauss’s law in the Weyl gauge is tied
to the elimination of residual spatial gauge transformations in the theory. The gauge choice
A0 = 0 does not eliminate all the gauge freedom in the theory - we still need to identify
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[Âj (x) , Êj0 (x
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[Âj (x) , ⇧̂j0 (x
0)] = i � (x� x0) �jj0 (8)

Using ⇧j = �Ej, we have
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All the above produces Ampere’s law in expectation (dynamics)

quantum states | ~Ai that are related to each other by purely spatial gauge transformations:
| ~Ai ⌘ | ~A + ~r↵ (x)i. The path integral (12) is not gauge invariant under these spatial
gauge transformations. To rectify this problem, the physical Hilbert space of the theory
is restricted so that the projection of the time evolution operator (12) onto this restricted
Hilbert space leads to gauge invariant physics.

Let us see how this works. We want the physics of the states | ~Ai to be identical to that
of the states | ~A + ~r↵i. Observe that these spatial gauge transformations are generated

by the operator ~r · ~̂E � Ĵ0. Thus, under a spatial gauge transformation, the eigenstates
of this operator will transform with an overall, physically irrelevant, phase. Now, consider
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commutes with ĤW , the time evolution of an initial state in this

eigen-subspace will remain in the same eigen-subspace. Together, these facts imply that the
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In the traditional quantization procedure [4], the physical states | EMi are taken to
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also leads to gauge invariant physics. For these states, Gauss’s law is not obeyed. Instead,
the time evolution is such that:
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which is exactly the form of (6).
We thus see that there are gauge invariant quantum states that violate Gauss’s law and
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universe could have been a state where Gauss’s law was preserved i.e. the state happened
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Instead consider

quantum states | ~Ai that are related to each other by purely spatial gauge transformations:
| ~Ai ⌘ | ~A + ~r↵ (x)i. The path integral (12) is not gauge invariant under these spatial
gauge transformations. To rectify this problem, the physical Hilbert space of the theory
is restricted so that the projection of the time evolution operator (12) onto this restricted
Hilbert space leads to gauge invariant physics.

Let us see how this works. We want the physics of the states | ~Ai to be identical to that
of the states | ~A + ~r↵i. Observe that these spatial gauge transformations are generated

by the operator ~r · ~̂E � Ĵ0. Thus, under a spatial gauge transformation, the eigenstates
of this operator will transform with an overall, physically irrelevant, phase. Now, consider

the physics of a subspace of eigenstates of ~r · ~̂E � Ĵ0 with the same eigenvalue. Since the

operator
⇣
~r · ~̂E � Ĵ0

⌘
commutes with ĤW , the time evolution of an initial state in this

eigen-subspace will remain in the same eigen-subspace. Together, these facts imply that the
physics of this eigen-subspace is invariant under spatial gauge transformations.

In the traditional quantization procedure [4], the physical states | EMi are taken to

be eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with zero eigenvalue. In this eigen-subspace, Gauss’s law is

preserved. But, this is a choice. An eigen sub-space of eigenstates of
⇣
~r · ~̂E � Ĵ0

⌘
with a

non-zero eigenvalue J
d

0 (x):
⇣
~r · ~̂E � Ĵ0

⌘
| EMi = J

d

0 (x) | EMi (14)

also leads to gauge invariant physics. For these states, Gauss’s law is not obeyed. Instead,
the time evolution is such that:

dh EM |
⇣
~r · ~̂E � Ĵ0

⌘
| EMi

dt
= 0 (15)

which is exactly the form of (6).
We thus see that there are gauge invariant quantum states that violate Gauss’s law and

there are no di�culties in time evolving these states. The initial quantum state of the
universe could have been a state where Gauss’s law was preserved i.e. the state happened

to be a state that was an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with eigenvalue zero. But, it could just

as easily have been an eigenstate of
⇣
~r · ~̂E � Ĵ0

⌘
with a non-zero eigenvalue Jd

0 (x). In this

case, Gauss’s law would be violated. It is a matter for experiment to decide which of these
scenarios is realized in our universe. Note that in states with J

d

0 (x) 6= 0, the initial state
is not the vacuum and it thus picks a rest frame. The state thus breaks Lorentz symmetry.
This is similar to the fact that our universe also picks a cosmic rest frame, breaking Lorentz
symmetry.

4 Coulomb Gauge

In the Weyl gauge, we removed gauge redundancies in two steps - first, by setting the operator
A0 = 0 and second, by restricting the Hilbert space of the theory by identifying quantum
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For the quantum theory
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =

(a3/N)�̇. The resulting Hamiltonian

H =
h
⇡ȧ+ ⇡��̇� L

i

ȧ=··· ,�̇=···

= � N

24M2
pl
a
⇡2 +

N

2a3
⇡2
�
+Na3V (�) (12)

is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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Gravity: Minisuperspace

of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
path integral. Thus the action that appears in the path integral that defines the transition
matrix elements (3) is not the original classical action S but instead a suitably gauge fixed
action Sgf . Since Sgf 6= S, the identities implied by changing the variables of integration in
the path integral are di↵erent from the conventional classical equations obtained by varying
S (see discussion in [1]).

Note the key distinction between the above quantum method of deriving the equations
of motion and the classical approach. In the classical theory, the classical action is first
varied and the equation of motion is obtained by setting these variations to zero. A gauge
choice is subsequently made to solve these equations of motion. In the quantum theory, the
definition of the Hamiltonian or the path integral requires a gauge choice – without such a
choice, either the Hamiltonian has ill-defined operators or the gauge degeneracies have not
been factorized from the path integral. This changes the derived classical equations. In the
following, we describe how these issues impact the quantization of general relativity and the
extraction of the classical limit of this quantum theory.

3 Minisuperspace

We start the discussion with a toy (but illustrative) model of cosmology known as minisuper-
space. It is general relativity in four dimensions and it describes homogeneous and isotropic
space-times. Namely, it is generated from a metric

gµ⌫ ! ds2 = �N (t)2 dt2 + a (t)2
�
dx2 + dy2 + dz2

�
(6)

The spatial degrees of freedom are frozen and the theory describes the time evolution of the
scale factor a in concert with other homogeneuous and isotropic forms of matter. The action
is the standard Einstein-Hilbert term plus matter

Sms =

Z
dt
p
�g
�
M2

pl
R + Lmatter

�
(7)

where Mpl = (8⇡GN)�1/2 is the reduced Planck mass, and R and g are the Ricci scalar and
the metric determinant respectively. The matter fields are position independent and the
volume integral (an overall volume factor) has been removed.

Finding the paths that extremize the action leads to the standard Friedmann equations.
For example, for a scalar field � with matter action Lmatter = �1

2g
µ⌫@µ�@⌫��V (�), and the

metric (6), the full action is2

Sms =

Z
dt

 
�6M2

pl

a(t)ȧ(t)2

N(t)
+

a(t)3�̇(t)2

2N(t)
�N(t)a(t)3V (�)

!
(8)

2
We have tacitly integrated by parts to remove terms with ä. This is equivalent to including a Gibbons-

Hawking-York term needed to produce the correct equations of motion for manifolds with boundaries [2,3].
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =

(a3/N)�̇. The resulting Hamiltonian

H =
h
⇡ȧ+ ⇡��̇� L

i

ȧ=··· ,�̇=···

= � N

24M2
pl
a
⇡2 +

N
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⇡2
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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Only 2nd Friedmann eqns in gravitational 
sector follow (dynamics!)

Now, once we fix N , we can write a quantum Hamiltonian operator by interpreting
a, ⇡,�, ⇡� as operators with standard commutation relations. There are remaining issues,
such as defining inverse field operators and operator ordering, which we will address below
when we derive the path integral.

Our main point is that once N is fixed, we only get the following equations in the
gravitational sector:

@thâi = �ih
h
ˆ̃H, â

i
i (14)

@th⇡̂i = �ih
h
ˆ̃H, ⇡̂

i
i (15)

When appropriately defining the commutators, inverse operators, and operator ordering, the
first equation reproduces the definition of the conjugate field ⇡, while the second equation
reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
the Schrödinger equation we had to pick a time parameterization and thus fix N . Once N
has been fixed, there aren’t additional equations that can be derived from varying it (see
discussion in section 2). Of course, the theory can be defined with any choice of N - but this
simply changes the definition of time and does not restrict the physical states of the theory.

While not guaranteed by the above theory, what is guaranteed is

@th ˆ̃Hi = ih
h
ˆ̃H, ˆ̃H

i
i = 0 (16)

which means if the initial state is chosen to satisfy the first Friedmann equation (in expec-
tation value), then it satisfies it at all times. This is equivalent to the classical equations,
where the time derivative of the first Friedmann equation is linearly dependent of the second

Friedmann equation and matter equations of motion. Thus, one can impose h ˆ̃Hi = 0 on the
initial state and it will be satisfied at all times. Note, classically this is just fixing the initial
boundary condition for ȧ(t).

What is instead often imposed in the literature is a second order constraint – namely that
the Hilbert space is restricted to the states | i such that Ĥ| i = 0. This is known as the
Wheeler-DeWitt equation [4], and while at the equation level seems to reproduce classical
physics, it in fact generates a theory without time evolution – the Schrödinger equation
becomes trivial and the quantum state is static. It has been suggested that time could
emerge from this “timeless” quantum state by the entanglement of one degree of freedom
with the other degrees of freedom so that the relative evolution between these states would
appear as time evolution. This suggestion has never been actually implemented and it has
largely been ruled out in general terms [5]. Moreover, while the idea of time being connected
to the relative evolution of quantum states has merit, the restriction imposed by the Wheeler-
DeWitt equation that the quantum state remain static implies that the only permitted states
of the theory are those where the quantum state is a macroscopic superposition over the entire
history of the cosmos [6].
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).

6

Or



First Friedmann                  not a 
consequence of the quantum dynamics

Now, once we fix N , we can write a quantum Hamiltonian operator by interpreting
a, ⇡,�, ⇡� as operators with standard commutation relations. There are remaining issues,
such as defining inverse field operators and operator ordering, which we will address below
when we derive the path integral.

Our main point is that once N is fixed, we only get the following equations in the
gravitational sector:

@thâi = �ih
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i (14)
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ˆ̃H, ⇡̂
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When appropriately defining the commutators, inverse operators, and operator ordering, the
first equation reproduces the definition of the conjugate field ⇡, while the second equation
reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
the Schrödinger equation we had to pick a time parameterization and thus fix N . Once N
has been fixed, there aren’t additional equations that can be derived from varying it (see
discussion in section 2). Of course, the theory can be defined with any choice of N - but this
simply changes the definition of time and does not restrict the physical states of the theory.

While not guaranteed by the above theory, what is guaranteed is
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which means if the initial state is chosen to satisfy the first Friedmann equation (in expec-
tation value), then it satisfies it at all times. This is equivalent to the classical equations,
where the time derivative of the first Friedmann equation is linearly dependent of the second

Friedmann equation and matter equations of motion. Thus, one can impose h ˆ̃Hi = 0 on the
initial state and it will be satisfied at all times. Note, classically this is just fixing the initial
boundary condition for ȧ(t).

What is instead often imposed in the literature is a second order constraint – namely that
the Hilbert space is restricted to the states | i such that Ĥ| i = 0. This is known as the
Wheeler-DeWitt equation [4], and while at the equation level seems to reproduce classical
physics, it in fact generates a theory without time evolution – the Schrödinger equation
becomes trivial and the quantum state is static. It has been suggested that time could
emerge from this “timeless” quantum state by the entanglement of one degree of freedom
with the other degrees of freedom so that the relative evolution between these states would
appear as time evolution. This suggestion has never been actually implemented and it has
largely been ruled out in general terms [5]. Moreover, while the idea of time being connected
to the relative evolution of quantum states has merit, the restriction imposed by the Wheeler-
DeWitt equation that the quantum state remain static implies that the only permitted states
of the theory are those where the quantum state is a macroscopic superposition over the entire
history of the cosmos [6].
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Now, once we fix N , we can write a quantum Hamiltonian operator by interpreting
a, ⇡,�, ⇡� as operators with standard commutation relations. There are remaining issues,
such as defining inverse field operators and operator ordering, which we will address below
when we derive the path integral.

Our main point is that once N is fixed, we only get the following equations in the
gravitational sector:
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i
i (14)

@th⇡̂i = �ih
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When appropriately defining the commutators, inverse operators, and operator ordering, the
first equation reproduces the definition of the conjugate field ⇡, while the second equation
reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
the Schrödinger equation we had to pick a time parameterization and thus fix N . Once N
has been fixed, there aren’t additional equations that can be derived from varying it (see
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with the other degrees of freedom so that the relative evolution between these states would
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What is instead often imposed in the literature is a second order constraint – namely that
the Hilbert space is restricted to the states |ψ〉 such that Ĥ|ψ〉 = 0. This is known as the
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@thâi = �ih
h
ˆ̃H, â
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i
i (14)

@th⇡̂i = �ih
h
ˆ̃H, ⇡̂

i
i (15)

When appropriately defining the commutators, inverse operators, and operator ordering, the
first equation reproduces the definition of the conjugate field ⇡, while the second equation
reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
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reproduces the second Friedmann equation. The first Friedmann equation would require

h ˆ̃Hi = 0, but is not necessarily a consequence of this quantum theory. In the classical
theory, this equation is produced by varying N - but in the quantum theory, to write down
the Schrödinger equation we had to pick a time parameterization and thus fix N . Once N
has been fixed, there aren’t additional equations that can be derived from varying it (see
discussion in section 2). Of course, the theory can be defined with any choice of N - but this
simply changes the definition of time and does not restrict the physical states of the theory.
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where the time derivative of the first Friedmann equation is linearly dependent of the second
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initial state and it will be satisfied at all times. Note, classically this is just fixing the initial
boundary condition for ȧ(t).

What is instead often imposed in the literature is a second order constraint – namely that
the Hilbert space is restricted to the states | i such that Ĥ| i = 0. This is known as the
Wheeler-DeWitt equation [4], and while at the equation level seems to reproduce classical
physics, it in fact generates a theory without time evolution – the Schrödinger equation
becomes trivial and the quantum state is static. It has been suggested that time could
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Gµ⌫ = Tµ⌫ + Tµ⌫
aux

Thus, in the coherent state basis, the path integral for quantum gravity should read:

〈πfγf · · · |e−iĤt|πiγi · · · 〉 =
∫ πf ,γf

πi,γi

DπDγ · · · ei
∫
d4x[ 12 (γ̇ijπij−π̇ijγij)−H[π,γ]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values πf and γf , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations

√
−g(Gµν −8πGNT µν) = 0. In synchronous gauge, we have found only the spatial

equations emerge from the quantum field theory in the classical limit. Let’s package the
loosening of restriction as we did for minisuperspace:

G00 = 8πGNT
00 + 8πGN

H√
−g

G0i = 8πGNT
0i + 8πGN

Pi

√
−g

Gij = 8πGNT
ij

for, as of yet, arbitrary functions H and Pi. In this language, we define an auxiliary energy-
momentum tensor

T µν
aux =

1√
−g





H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0



 (33)

Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
∇µ(Gµν − 8πGNT µν) = 0, then:

0 = ∇µT
µν
aux = ∂µT

µν
aux + Γµ

µλT
λν
aux + Γν

µλT
µλ
aux (34)

These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −

√
−g∂ν(1/

√
−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as

∂0t
00
aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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∇µ(Gµν − 8πGNT µν) = 0, then:

0 = ∇µT
µν
aux = ∂µT

µν
aux + Γµ

µλT
λν
aux + Γν

µλT
µλ
aux (34)

These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −

√
−g∂ν(1/

√
−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as

∂0t
00
aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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a limit of the quantum field theory, the imposed Hamilto-
nian constraint that physical states are annihilated by the
Hamiltonian, H |Ψ〉 = 0, presents a significant ‘problem of
time’. The Schrödinger equation in this case is now triv-
ial and dynamical classical states (coherent states) cannot
be constructed. There have been attempts to adapt these
rules to allow for some version of time evolution, often de-
pending on the asymptotics of the state [7] (e.g., see [8] for
a recent review of these issues in quantum cosmology).

A simple solution to the problem of time, advocated
in [1, 2], is to not impose the constraints on the states
and allow for the full implied Hilbert space. One could
then choose to study gravitational systems where the con-
straints are still satisfied at the expectation value level,
e.g. 〈Ψ|H |Ψ〉 = 0. This reproduces the standard classical
constraint without imposing the condition that the system
is in an eigenstate of H , thus allowing its evolution as per
the normal notion of time evolution in quantum mechanics.
More generally, however, one could study systems where
the constraints are not satisfied even in expectation value
[9]. The most general classical limit of Einstein’s equations
is, in synchronous gauge

√
−g Gµν = 8πGN

√
−g (T µν + T µν

aux), (1)

where

√
−g T µν

aux ≡









H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0









(2)

and where H and Pi are functions of spacetime. The
Bianchi identity ∇µGµν = 0 and a covariantly conserved
energy-momentum tensor ∇µT µν = 0, as a result of the
equations of motion of the other fields, imply that this
auxiliary tensor is also covariantly conserved, setting the
following conditions in synchronous gauge:

∂0H = −∂iP
i (3)

∂0
(

gijP
j
)

= 0. (4)

We now study the physical consequences of these addi-
tional source terms.

Let us first analyze the case where the Pi = 0. Then,
from Eq. (3), we see that H = H(x) is independent of time.
If H is everywhere positive, we can additionally remove the
remaining coordinate freedom in the synchronous gauge
and make a spatial coordinate redefinition x → ξ(x) such
that the determinant ||∂xi/∂ξj|| = H/H(x), where H is
a constant. Thus, in this case, the spatial dependence in
H can be entirely moved into the metric. We will briefly
discuss non-positive definite H later in the article.

We can show that this new source term will reproduce
the effects of dark matter by noting that our auxiliary
energy-momentum tensor can be written as

T µν
aux = ρauxu

µuν (5)

in which ρaux = H/
√
−g and uµ = {1, 0, 0, 0} in syn-

chronous gauge. The energy momentum tensor (5) is

recognizably the form of a general pressureless dust,
T µν = ρuµuν . In synchronous gauge, a dust with zero ve-
locity will satisfy

0 = ∇µT
µν

= ∂µ(ρu
µuν) + Γµ

µλρu
λuν + Γν

µλρu
µuλ

= δν0∂0ρ+ (1/
√
−g)(∂0

√
−g)δν0ρ

= (1/
√
−g)∂0(

√
−gρ)δν0

where in the third line we used the relation ∂λ
√
−g =

Γµ
µλ

√
−g and the fact that Γ0

µ0 = 0 in synchronous gauge.
The above implies ρ = f(x)/

√
−g is the most general form

of pressureless, zero-velocity dust in synchronous gauge
(where again we could choose to absorb the x dependence
into the metric). That is, ρaux behaves precisely like pres-
sureless dust.

To reinforce the above point, consider the following
equation

0 = ∇µT
µν
aux = ∇µ(ρaux u

µ)uν + ρaux u
µ∇µu

ν . (6)

In synchronous gauge it is particularly easy to see
that the four-velocity uµ satisfies the geodesic equation,
uµ∇µuν = 0, and thus the density current ρauxuµ is co-
variantly conserved

∇µ(ρaux u
µ) = 0 . (7)

Being tensor equations, these are true in any gauge. Thus,
this system will evolve as if there is a fluid component of
pressureless dust that undergoes geodesic evolution. As-
suming our ansatz of nearly homogeneous initial condi-
tions, we predict evolution equivalent to that of cold dark
matter.

Since simulations of dark matter implicitly assume the
dynamics are independent of the short-wavelength physics
(in fact it is well known that short-wavelength nonlinear-
ity quickly decouples from long-wavelength evolution [10]),
the usual machinery of N−body simulations or perturba-
tion theory [11] can be used to study the non-linear evolu-
tion here as well. Similar to the case of real dark matter,
to avoid issues of potential coordinate singularities in the
synchronous gauge, one can transform the equations to
another gauge such as Newtonian gauge [12]. In the quan-
tum theory, this amounts to identifying a basis of coherent
states that smoothly tracks the classical evolution. In this
way, for the case of both shadow and real dark matter, a
system with initial conditions set in the synchronous gauge
can be evolved to arbitrary times in the future.

One ultimately expects that virialized structures such as
halos will form exactly as in the standard cold dark matter
picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.

We now proceed to consider the most general case of
the auxiliary tensor where Pi (= 0. The source term can be

Can ask what this auxiliary component 
looks like for certain choices of these 
functions
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Gµ⌫ = Tµ⌫ + Tµ⌫
aux

Thus, in the coherent state basis, the path integral for quantum gravity should read:

〈πfγf · · · |e−iĤt|πiγi · · · 〉 =
∫ πf ,γf

πi,γi

DπDγ · · · ei
∫
d4x[ 12 (γ̇ijπij−π̇ijγij)−H[π,γ]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values πf and γf , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
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−g(Gµν −8πGNT µν) = 0. In synchronous gauge, we have found only the spatial
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loosening of restriction as we did for minisuperspace:
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Pi

√
−g

Gij = 8πGNT
ij

for, as of yet, arbitrary functions H and Pi. In this language, we define an auxiliary energy-
momentum tensor

T µν
aux =

1√
−g
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P2 0 0 0
P3 0 0 0
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Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
∇µ(Gµν − 8πGNT µν) = 0, then:
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µλT
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These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −
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−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as
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aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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a limit of the quantum field theory, the imposed Hamilto-
nian constraint that physical states are annihilated by the
Hamiltonian, H |Ψ〉 = 0, presents a significant ‘problem of
time’. The Schrödinger equation in this case is now triv-
ial and dynamical classical states (coherent states) cannot
be constructed. There have been attempts to adapt these
rules to allow for some version of time evolution, often de-
pending on the asymptotics of the state [7] (e.g., see [8] for
a recent review of these issues in quantum cosmology).

A simple solution to the problem of time, advocated
in [1, 2], is to not impose the constraints on the states
and allow for the full implied Hilbert space. One could
then choose to study gravitational systems where the con-
straints are still satisfied at the expectation value level,
e.g. 〈Ψ|H |Ψ〉 = 0. This reproduces the standard classical
constraint without imposing the condition that the system
is in an eigenstate of H , thus allowing its evolution as per
the normal notion of time evolution in quantum mechanics.
More generally, however, one could study systems where
the constraints are not satisfied even in expectation value
[9]. The most general classical limit of Einstein’s equations
is, in synchronous gauge

√
−g Gµν = 8πGN

√
−g (T µν + T µν

aux), (1)

where

√
−g T µν

aux ≡









H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0









(2)

and where H and Pi are functions of spacetime. The
Bianchi identity ∇µGµν = 0 and a covariantly conserved
energy-momentum tensor ∇µT µν = 0, as a result of the
equations of motion of the other fields, imply that this
auxiliary tensor is also covariantly conserved, setting the
following conditions in synchronous gauge:

∂0H = −∂iP
i (3)

∂0
(

gijP
j
)

= 0. (4)

We now study the physical consequences of these addi-
tional source terms.

Let us first analyze the case where the Pi = 0. Then,
from Eq. (3), we see that H = H(x) is independent of time.
If H is everywhere positive, we can additionally remove the
remaining coordinate freedom in the synchronous gauge
and make a spatial coordinate redefinition x → ξ(x) such
that the determinant ||∂xi/∂ξj|| = H/H(x), where H is
a constant. Thus, in this case, the spatial dependence in
H can be entirely moved into the metric. We will briefly
discuss non-positive definite H later in the article.

We can show that this new source term will reproduce
the effects of dark matter by noting that our auxiliary
energy-momentum tensor can be written as

T µν
aux = ρauxu

µuν (5)

in which ρaux = H/
√
−g and uµ = {1, 0, 0, 0} in syn-

chronous gauge. The energy momentum tensor (5) is

recognizably the form of a general pressureless dust,
T µν = ρuµuν . In synchronous gauge, a dust with zero ve-
locity will satisfy

0 = ∇µT
µν

= ∂µ(ρu
µuν) + Γµ

µλρu
λuν + Γν

µλρu
µuλ

= δν0∂0ρ+ (1/
√
−g)(∂0

√
−g)δν0ρ

= (1/
√
−g)∂0(

√
−gρ)δν0

where in the third line we used the relation ∂λ
√
−g =

Γµ
µλ

√
−g and the fact that Γ0

µ0 = 0 in synchronous gauge.
The above implies ρ = f(x)/

√
−g is the most general form

of pressureless, zero-velocity dust in synchronous gauge
(where again we could choose to absorb the x dependence
into the metric). That is, ρaux behaves precisely like pres-
sureless dust.

To reinforce the above point, consider the following
equation

0 = ∇µT
µν
aux = ∇µ(ρaux u

µ)uν + ρaux u
µ∇µu

ν . (6)

In synchronous gauge it is particularly easy to see
that the four-velocity uµ satisfies the geodesic equation,
uµ∇µuν = 0, and thus the density current ρauxuµ is co-
variantly conserved

∇µ(ρaux u
µ) = 0 . (7)

Being tensor equations, these are true in any gauge. Thus,
this system will evolve as if there is a fluid component of
pressureless dust that undergoes geodesic evolution. As-
suming our ansatz of nearly homogeneous initial condi-
tions, we predict evolution equivalent to that of cold dark
matter.

Since simulations of dark matter implicitly assume the
dynamics are independent of the short-wavelength physics
(in fact it is well known that short-wavelength nonlinear-
ity quickly decouples from long-wavelength evolution [10]),
the usual machinery of N−body simulations or perturba-
tion theory [11] can be used to study the non-linear evolu-
tion here as well. Similar to the case of real dark matter,
to avoid issues of potential coordinate singularities in the
synchronous gauge, one can transform the equations to
another gauge such as Newtonian gauge [12]. In the quan-
tum theory, this amounts to identifying a basis of coherent
states that smoothly tracks the classical evolution. In this
way, for the case of both shadow and real dark matter, a
system with initial conditions set in the synchronous gauge
can be evolved to arbitrary times in the future.

One ultimately expects that virialized structures such as
halos will form exactly as in the standard cold dark matter
picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.

We now proceed to consider the most general case of
the auxiliary tensor where Pi (= 0. The source term can be
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a limit of the quantum field theory, the imposed Hamilto-
nian constraint that physical states are annihilated by the
Hamiltonian, H |Ψ〉 = 0, presents a significant ‘problem of
time’. The Schrödinger equation in this case is now triv-
ial and dynamical classical states (coherent states) cannot
be constructed. There have been attempts to adapt these
rules to allow for some version of time evolution, often de-
pending on the asymptotics of the state [7] (e.g., see [8] for
a recent review of these issues in quantum cosmology).

A simple solution to the problem of time, advocated
in [1, 2], is to not impose the constraints on the states
and allow for the full implied Hilbert space. One could
then choose to study gravitational systems where the con-
straints are still satisfied at the expectation value level,
e.g. 〈Ψ|H |Ψ〉 = 0. This reproduces the standard classical
constraint without imposing the condition that the system
is in an eigenstate of H , thus allowing its evolution as per
the normal notion of time evolution in quantum mechanics.
More generally, however, one could study systems where
the constraints are not satisfied even in expectation value
[9]. The most general classical limit of Einstein’s equations
is, in synchronous gauge

√
−g Gµν = 8πGN

√
−g (T µν + T µν

aux), (1)

where

√
−g T µν

aux ≡









H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0









(2)

and where H and Pi are functions of spacetime. The
Bianchi identity ∇µGµν = 0 and a covariantly conserved
energy-momentum tensor ∇µT µν = 0, as a result of the
equations of motion of the other fields, imply that this
auxiliary tensor is also covariantly conserved, setting the
following conditions in synchronous gauge:

∂0H = −∂iP
i (3)

∂0
(

gijP
j
)

= 0. (4)

We now study the physical consequences of these addi-
tional source terms.

Let us first analyze the case where the Pi = 0. Then,
from Eq. (3), we see that H = H(x) is independent of time.
If H is everywhere positive, we can additionally remove the
remaining coordinate freedom in the synchronous gauge
and make a spatial coordinate redefinition x → ξ(x) such
that the determinant ||∂xi/∂ξj|| = H/H(x), where H is
a constant. Thus, in this case, the spatial dependence in
H can be entirely moved into the metric. We will briefly
discuss non-positive definite H later in the article.

We can show that this new source term will reproduce
the effects of dark matter by noting that our auxiliary
energy-momentum tensor can be written as

T µν
aux = ρauxu

µuν (5)

in which ρaux = H/
√
−g and uµ = {1, 0, 0, 0} in syn-

chronous gauge. The energy momentum tensor (5) is

recognizably the form of a general pressureless dust,
T µν = ρuµuν . In synchronous gauge, a dust with zero ve-
locity will satisfy

0 = ∇µT
µν

= ∂µ(ρu
µuν) + Γµ

µλρu
λuν + Γν

µλρu
µuλ

= δν0∂0ρ+ (1/
√
−g)(∂0

√
−g)δν0ρ

= (1/
√
−g)∂0(

√
−gρ)δν0

where in the third line we used the relation ∂λ
√
−g =

Γµ
µλ

√
−g and the fact that Γ0

µ0 = 0 in synchronous gauge.
The above implies ρ = f(x)/

√
−g is the most general form

of pressureless, zero-velocity dust in synchronous gauge
(where again we could choose to absorb the x dependence
into the metric). That is, ρaux behaves precisely like pres-
sureless dust.

To reinforce the above point, consider the following
equation

0 = ∇µT
µν
aux = ∇µ(ρaux u

µ)uν + ρaux u
µ∇µu

ν . (6)

In synchronous gauge it is particularly easy to see
that the four-velocity uµ satisfies the geodesic equation,
uµ∇µuν = 0, and thus the density current ρauxuµ is co-
variantly conserved

∇µ(ρaux u
µ) = 0 . (7)

Being tensor equations, these are true in any gauge. Thus,
this system will evolve as if there is a fluid component of
pressureless dust that undergoes geodesic evolution. As-
suming our ansatz of nearly homogeneous initial condi-
tions, we predict evolution equivalent to that of cold dark
matter.

Since simulations of dark matter implicitly assume the
dynamics are independent of the short-wavelength physics
(in fact it is well known that short-wavelength nonlinear-
ity quickly decouples from long-wavelength evolution [10]),
the usual machinery of N−body simulations or perturba-
tion theory [11] can be used to study the non-linear evolu-
tion here as well. Similar to the case of real dark matter,
to avoid issues of potential coordinate singularities in the
synchronous gauge, one can transform the equations to
another gauge such as Newtonian gauge [12]. In the quan-
tum theory, this amounts to identifying a basis of coherent
states that smoothly tracks the classical evolution. In this
way, for the case of both shadow and real dark matter, a
system with initial conditions set in the synchronous gauge
can be evolved to arbitrary times in the future.

One ultimately expects that virialized structures such as
halos will form exactly as in the standard cold dark matter
picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.

We now proceed to consider the most general case of
the auxiliary tensor where Pi (= 0. The source term can be
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a limit of the quantum field theory, the imposed Hamilto-
nian constraint that physical states are annihilated by the
Hamiltonian, H |Ψ〉 = 0, presents a significant ‘problem of
time’. The Schrödinger equation in this case is now triv-
ial and dynamical classical states (coherent states) cannot
be constructed. There have been attempts to adapt these
rules to allow for some version of time evolution, often de-
pending on the asymptotics of the state [7] (e.g., see [8] for
a recent review of these issues in quantum cosmology).

A simple solution to the problem of time, advocated
in [1, 2], is to not impose the constraints on the states
and allow for the full implied Hilbert space. One could
then choose to study gravitational systems where the con-
straints are still satisfied at the expectation value level,
e.g. 〈Ψ|H |Ψ〉 = 0. This reproduces the standard classical
constraint without imposing the condition that the system
is in an eigenstate of H , thus allowing its evolution as per
the normal notion of time evolution in quantum mechanics.
More generally, however, one could study systems where
the constraints are not satisfied even in expectation value
[9]. The most general classical limit of Einstein’s equations
is, in synchronous gauge
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where
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and where H and Pi are functions of spacetime. The
Bianchi identity ∇µGµν = 0 and a covariantly conserved
energy-momentum tensor ∇µT µν = 0, as a result of the
equations of motion of the other fields, imply that this
auxiliary tensor is also covariantly conserved, setting the
following conditions in synchronous gauge:

∂0H = −∂iP
i (3)

∂0
(

gijP
j
)

= 0. (4)

We now study the physical consequences of these addi-
tional source terms.

Let us first analyze the case where the Pi = 0. Then,
from Eq. (3), we see that H = H(x) is independent of time.
If H is everywhere positive, we can additionally remove the
remaining coordinate freedom in the synchronous gauge
and make a spatial coordinate redefinition x → ξ(x) such
that the determinant ||∂xi/∂ξj|| = H/H(x), where H is
a constant. Thus, in this case, the spatial dependence in
H can be entirely moved into the metric. We will briefly
discuss non-positive definite H later in the article.

We can show that this new source term will reproduce
the effects of dark matter by noting that our auxiliary
energy-momentum tensor can be written as

T µν
aux = ρauxu

µuν (5)

in which ρaux = H/
√
−g and uµ = {1, 0, 0, 0} in syn-

chronous gauge. The energy momentum tensor (5) is

recognizably the form of a general pressureless dust,
T µν = ρuµuν . In synchronous gauge, a dust with zero ve-
locity will satisfy

0 = ∇µT
µν

= ∂µ(ρu
µuν) + Γµ
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= δν0∂0ρ+ (1/
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where in the third line we used the relation ∂λ
√
−g =

Γµ
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√
−g and the fact that Γ0

µ0 = 0 in synchronous gauge.
The above implies ρ = f(x)/

√
−g is the most general form

of pressureless, zero-velocity dust in synchronous gauge
(where again we could choose to absorb the x dependence
into the metric). That is, ρaux behaves precisely like pres-
sureless dust.

To reinforce the above point, consider the following
equation

0 = ∇µT
µν
aux = ∇µ(ρaux u

µ)uν + ρaux u
µ∇µu

ν . (6)

In synchronous gauge it is particularly easy to see
that the four-velocity uµ satisfies the geodesic equation,
uµ∇µuν = 0, and thus the density current ρauxuµ is co-
variantly conserved

∇µ(ρaux u
µ) = 0 . (7)

Being tensor equations, these are true in any gauge. Thus,
this system will evolve as if there is a fluid component of
pressureless dust that undergoes geodesic evolution. As-
suming our ansatz of nearly homogeneous initial condi-
tions, we predict evolution equivalent to that of cold dark
matter.

Since simulations of dark matter implicitly assume the
dynamics are independent of the short-wavelength physics
(in fact it is well known that short-wavelength nonlinear-
ity quickly decouples from long-wavelength evolution [10]),
the usual machinery of N−body simulations or perturba-
tion theory [11] can be used to study the non-linear evolu-
tion here as well. Similar to the case of real dark matter,
to avoid issues of potential coordinate singularities in the
synchronous gauge, one can transform the equations to
another gauge such as Newtonian gauge [12]. In the quan-
tum theory, this amounts to identifying a basis of coherent
states that smoothly tracks the classical evolution. In this
way, for the case of both shadow and real dark matter, a
system with initial conditions set in the synchronous gauge
can be evolved to arbitrary times in the future.

One ultimately expects that virialized structures such as
halos will form exactly as in the standard cold dark matter
picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.

We now proceed to consider the most general case of
the auxiliary tensor where Pi (= 0. The source term can be
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a limit of the quantum field theory, the imposed Hamilto-
nian constraint that physical states are annihilated by the
Hamiltonian, H |Ψ〉 = 0, presents a significant ‘problem of
time’. The Schrödinger equation in this case is now triv-
ial and dynamical classical states (coherent states) cannot
be constructed. There have been attempts to adapt these
rules to allow for some version of time evolution, often de-
pending on the asymptotics of the state [7] (e.g., see [8] for
a recent review of these issues in quantum cosmology).

A simple solution to the problem of time, advocated
in [1, 2], is to not impose the constraints on the states
and allow for the full implied Hilbert space. One could
then choose to study gravitational systems where the con-
straints are still satisfied at the expectation value level,
e.g. 〈Ψ|H |Ψ〉 = 0. This reproduces the standard classical
constraint without imposing the condition that the system
is in an eigenstate of H , thus allowing its evolution as per
the normal notion of time evolution in quantum mechanics.
More generally, however, one could study systems where
the constraints are not satisfied even in expectation value
[9]. The most general classical limit of Einstein’s equations
is, in synchronous gauge

√
−g Gµν = 8πGN

√
−g (T µν + T µν

aux), (1)

where

√
−g T µν

aux ≡









H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0









(2)

and where H and Pi are functions of spacetime. The
Bianchi identity ∇µGµν = 0 and a covariantly conserved
energy-momentum tensor ∇µT µν = 0, as a result of the
equations of motion of the other fields, imply that this
auxiliary tensor is also covariantly conserved, setting the
following conditions in synchronous gauge:

∂0H = −∂iP
i (3)

∂0
(

gijP
j
)

= 0. (4)

We now study the physical consequences of these addi-
tional source terms.

Let us first analyze the case where the Pi = 0. Then,
from Eq. (3), we see that H = H(x) is independent of time.
If H is everywhere positive, we can additionally remove the
remaining coordinate freedom in the synchronous gauge
and make a spatial coordinate redefinition x → ξ(x) such
that the determinant ||∂xi/∂ξj|| = H/H(x), where H is
a constant. Thus, in this case, the spatial dependence in
H can be entirely moved into the metric. We will briefly
discuss non-positive definite H later in the article.

We can show that this new source term will reproduce
the effects of dark matter by noting that our auxiliary
energy-momentum tensor can be written as

T µν
aux = ρauxu

µuν (5)

in which ρaux = H/
√
−g and uµ = {1, 0, 0, 0} in syn-

chronous gauge. The energy momentum tensor (5) is

recognizably the form of a general pressureless dust,
T µν = ρuµuν . In synchronous gauge, a dust with zero ve-
locity will satisfy

0 = ∇µT
µν

= ∂µ(ρu
µuν) + Γµ

µλρu
λuν + Γν

µλρu
µuλ

= δν0∂0ρ+ (1/
√
−g)(∂0

√
−g)δν0ρ

= (1/
√
−g)∂0(

√
−gρ)δν0

where in the third line we used the relation ∂λ
√
−g =

Γµ
µλ

√
−g and the fact that Γ0

µ0 = 0 in synchronous gauge.
The above implies ρ = f(x)/

√
−g is the most general form

of pressureless, zero-velocity dust in synchronous gauge
(where again we could choose to absorb the x dependence
into the metric). That is, ρaux behaves precisely like pres-
sureless dust.

To reinforce the above point, consider the following
equation

0 = ∇µT
µν
aux = ∇µ(ρaux u

µ)uν + ρaux u
µ∇µu

ν . (6)

In synchronous gauge it is particularly easy to see
that the four-velocity uµ satisfies the geodesic equation,
uµ∇µuν = 0, and thus the density current ρauxuµ is co-
variantly conserved

∇µ(ρaux u
µ) = 0 . (7)

Being tensor equations, these are true in any gauge. Thus,
this system will evolve as if there is a fluid component of
pressureless dust that undergoes geodesic evolution. As-
suming our ansatz of nearly homogeneous initial condi-
tions, we predict evolution equivalent to that of cold dark
matter.

Since simulations of dark matter implicitly assume the
dynamics are independent of the short-wavelength physics
(in fact it is well known that short-wavelength nonlinear-
ity quickly decouples from long-wavelength evolution [10]),
the usual machinery of N−body simulations or perturba-
tion theory [11] can be used to study the non-linear evolu-
tion here as well. Similar to the case of real dark matter,
to avoid issues of potential coordinate singularities in the
synchronous gauge, one can transform the equations to
another gauge such as Newtonian gauge [12]. In the quan-
tum theory, this amounts to identifying a basis of coherent
states that smoothly tracks the classical evolution. In this
way, for the case of both shadow and real dark matter, a
system with initial conditions set in the synchronous gauge
can be evolved to arbitrary times in the future.

One ultimately expects that virialized structures such as
halos will form exactly as in the standard cold dark matter
picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.

We now proceed to consider the most general case of
the auxiliary tensor where Pi (= 0. The source term can be

(In this gauge)
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picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.
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Would clump, virialize, behave as exactly as DM

Structures may form down to very small scales, even below free-
streaming length of conventional DM candidates e.g. WIMP



Early universe cosmology

The auxiliary shadow matter is not dynamical 
- relic structure

Period of inflation would dilute it and it could not be the 
dark matter 

Evolution of shadow matter in alternative cosmologies 
is of interest

These typically need null energy condition to be violated
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new auxiliary charged matter. Again, in synchronous
gauge we parameterize T µν

aux as in (2), but with new con-
straint equations:

∂0H+ ∂iP
i = 0 (19)

∂0
(

gkjP
j
)

= −Fk0J (20)

These equations can be integrated to solve explicitly for H
and Pi. In an expanding universe, these new terms redshift
away if they are small (perturbative) compared with the
homogeneous energy density.

While the time-dependence of this auxiliary fluid is fixed
by the constraints, the remaining freedom in the initial
conditions is of course arbitrary. Starting with our ansatz,
we expect the auxiliary current to contribute at first or-
der, i.e., small inhomogeneous perturbations in the shadow
charge density about zero. Describing these fluctuations
in Fourier space, the modes outside the horizon in an ex-
panding universe will evolve such that the charge density
redshifts like a matter density, as the inverse of the scale
factor cubed.

Inside the horizon, shadow charge is a source of rich phe-
nomenological possibilities with complex dynamics. Be-
cause shadow charge flows with the dark matter but cou-
ples to the baryon-photon fluid, it could represent an effec-
tive interaction between dark matter and baryonic matter.
This interaction could show up in the early universe affect-
ing the photon diffusion length and the ionized matter frac-
tion after recombination. It could be a source of isocurva-
ture perturbations if the perturbations were distinct from
shadow matter. And it could also be a new source of sig-
nals in the galaxy today. For example, the shadow charge
could be screened by regular matter, but this matter could
interact at short distances with the Earth’s atmosphere or
with cosmic ray experiments on the Earth’s surface. It may
also lead to a new explanation for the large-scale magnetic
fields observed in galaxy clusters and cosmic filaments [17–
19]. The complexity of the interaction of shadow matter
with regular matter would be an exciting source of new sig-
nals and motivates numerical simulations on cosmological
and galactic scales.

Early universe cosmology An important point about this
new modification to Einstein’s equations is that T µν

aux is not
dynamical, in the sense that it is not adding additional de-
grees of freedom with wave-like properties. The new source
term parameterizes the initial conditions of the non-tensor
parts of the gravitational field and thus represents a kind
of relic structure. Due to the redshift properties of this
source, a period of standard cosmological inflation (for a
review, see [20]) would completely dilute this contribution
to cosmology, in which case it could not play the role of
dark matter. If shadow matter was in fact the dark matter,
it would point to a different early cosmology and would be
a direct probe of the initial conditions of the universe.

In light of the above, it is of interest to explore the evolu-
tion of shadow matter and charge in non-inflationary, early
universe cosmologies, such those with quasi-static or oscil-
lating periods which decay into an expanding universe [21–
27]. Note that if the matter and radiation in the universe

have their own set of perturbations, this extra inhomogene-
ity would represent a contribution to isocurvature. These
uncorrelated dark matter density isocurvature perturba-
tions would be constrained by cosmological observations
such as Planck data [28]. Thus it would be interesting to
see if one can be dominated by adiabatic perturbations in
these other scenarios.

Critically, all of the above alternatives to inflation re-
quire violations of the null-energy condition (NEC). For a
fluid described by the stress-energy tensor in Eq. (8) the
NEC is trivially violated by choosing H < 0. However,
there is also the possibility of having positive H, while re-
quiring

ρ2aux < 4Q2 , (21)

where Q2 ≡ qµqµ. This is enough to violate all the en-
ergy conditions (including the NEC) [29]. Using the so-
lution of Einstein’s equation to linear order around a ho-
mogeneous and isotropic universe, the inequality (21) can
be met at some small but finite value of the scale fac-
tor, assuming the remaining matter dominates and is in
the linear regime. Upon further contraction, if the NEC-
violating source terms become comparable to the back-
ground quantities, the perturbative approximation breaks
down. These effects strongly motivate studying the full
nonlinear regime, where this possibility of violating the
NEC may give rise to interesting effects beyond the non-
singular bounces described above, such as wormhole ge-
ometries (e.g., [30, 31]), structures with negative mass,
and other phenomena.

Discussion In this article we showed how modifications
of the source terms in general relativity generate a ‘shadow
matter’ that could be the perceived dark matter in the
universe, and how modifications of Gauss’ law generate
a ‘shadow charge’ contribution to the Maxwell-Einstein
equations. A shadow matter explanation of dark matter
can be immediately falsified by an experimental discovery
of inflation. Any positive results from particle dark matter
direct or indirect detection experiments would also rule out
shadow matter from being (all of) the dark matter. How-
ever, assuming such evidence does not materialize, there
are avenues that can potentially distinguish shadow mat-
ter from dynamical dust. For example, the heat flux terms
in the auxiliary stress-energy tensor that may be small in
the present universe could have had an observable effect
at early times. More exotically, small regions could exist
where the shadow matter has negative energy density. Ei-
ther of these would be a smoking gun of a shadow matter
fluid.

But perhaps the most promising avenue to search for ev-
idence of shadow matter is to pursue experimental efforts
to observe shadow charge. Observation of shadow charge
would, by itself, rule out cosmic inflation, demonstrate that
the universe violates Gauss’ law, and thus render the exis-
tence of generic shadow matter extremely plausible. More
than this, it would in fact be a direct verification of the
existence of at least some shadow matter component to the
universe, by the fact that shadow charge sources its own

Or 

(Very possible for this shadow fluid)

Thus, in the coherent state basis, the path integral for quantum gravity should read:

〈πfγf · · · |e−iĤt|πiγi · · · 〉 =
∫ πf ,γf

πi,γi

DπDγ · · · ei
∫
d4x[ 12 (γ̇ijπij−π̇ijγij)−H[π,γ]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values πf and γf , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations

√
−g(Gµν −8πGNT µν) = 0. In synchronous gauge, we have found only the spatial

equations emerge from the quantum field theory in the classical limit. Let’s package the
loosening of restriction as we did for minisuperspace:

G00 = 8πGNT
00 + 8πGN

H√
−g

G0i = 8πGNT
0i + 8πGN

Pi

√
−g

Gij = 8πGNT
ij

for, as of yet, arbitrary functions H and Pi. In this language, we define an auxiliary energy-
momentum tensor

T µν
aux =

1√
−g





H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0



 (33)

Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
∇µ(Gµν − 8πGNT µν) = 0, then:

0 = ∇µT
µν
aux = ∂µT

µν
aux + Γµ

µλT
λν
aux + Γν

µλT
µλ
aux (34)

These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −

√
−g∂ν(1/

√
−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as

∂0t
00
aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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Conclusions

Relic structure is a feature of the gauge theories of EM 
and Gravity: should be experimentally constrained

Presence in universe today not consistent with inflation. 
Conversely, if shadow matter is the DM, this would rule 
out inflation and require novel early cosmology

Signals include null energy violation (negative mass), or 
detection of relic structure from EM coupled to gravity - 
“Shadow Charge” - with a potentially much more visible 
phenomenology

Comes hand-in-hand with simple(st?) solution to ‘the 
problem of time’
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Minisuperspace

of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
path integral. Thus the action that appears in the path integral that defines the transition
matrix elements (3) is not the original classical action S but instead a suitably gauge fixed
action Sgf . Since Sgf 6= S, the identities implied by changing the variables of integration in
the path integral are di↵erent from the conventional classical equations obtained by varying
S (see discussion in [1]).

Note the key distinction between the above quantum method of deriving the equations
of motion and the classical approach. In the classical theory, the classical action is first
varied and the equation of motion is obtained by setting these variations to zero. A gauge
choice is subsequently made to solve these equations of motion. In the quantum theory, the
definition of the Hamiltonian or the path integral requires a gauge choice – without such a
choice, either the Hamiltonian has ill-defined operators or the gauge degeneracies have not
been factorized from the path integral. This changes the derived classical equations. In the
following, we describe how these issues impact the quantization of general relativity and the
extraction of the classical limit of this quantum theory.

3 Minisuperspace

We start the discussion with a toy (but illustrative) model of cosmology known as minisuper-
space. It is general relativity in four dimensions and it describes homogeneous and isotropic
space-times. Namely, it is generated from a metric

gµ⌫ ! ds2 = �N (t)2 dt2 + a (t)2
�
dx2 + dy2 + dz2

�
(6)

The spatial degrees of freedom are frozen and the theory describes the time evolution of the
scale factor a in concert with other homogeneuous and isotropic forms of matter. The action
is the standard Einstein-Hilbert term plus matter

Sms =

Z
dt
p
�g
�
M2

pl
R + Lmatter

�
(7)

where Mpl = (8⇡GN)�1/2 is the reduced Planck mass, and R and g are the Ricci scalar and
the metric determinant respectively. The matter fields are position independent and the
volume integral (an overall volume factor) has been removed.

Finding the paths that extremize the action leads to the standard Friedmann equations.
For example, for a scalar field � with matter action Lmatter = �1

2g
µ⌫@µ�@⌫��V (�), and the

metric (6), the full action is2

Sms =

Z
dt

 
�6M2

pl

a(t)ȧ(t)2

N(t)
+

a(t)3�̇(t)2

2N(t)
�N(t)a(t)3V (�)

!
(8)

2
We have tacitly integrated by parts to remove terms with ä. This is equivalent to including a Gibbons-

Hawking-York term needed to produce the correct equations of motion for manifolds with boundaries [2,3].
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the path integral are di↵erent from the conventional classical equations obtained by varying
S (see discussion in [1]).

Note the key distinction between the above quantum method of deriving the equations
of motion and the classical approach. In the classical theory, the classical action is first
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =

(a3/N)�̇. The resulting Hamiltonian
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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of freedom to be factorized. This factorization e↵ectively enforces a gauge choice on the
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The spatial degrees of freedom are frozen and the theory describes the time evolution of the
scale factor a in concert with other homogeneuous and isotropic forms of matter. The action
is the standard Einstein-Hilbert term plus matter

Sms =
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p
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where Mpl = (8⇡GN)�1/2 is the reduced Planck mass, and R and g are the Ricci scalar and
the metric determinant respectively. The matter fields are position independent and the
volume integral (an overall volume factor) has been removed.

Finding the paths that extremize the action leads to the standard Friedmann equations.
For example, for a scalar field � with matter action Lmatter = �1
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µ⌫@µ�@⌫��V (�), and the

metric (6), the full action is2
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ȧṄ

N3a
+

�̇2

2N2
� V (�)

!
= 0 (10)

�Sms

��
= �a3

N

 
�̈+ 3

ȧ
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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action Sgf . Since Sgf 6= S, the identities implied by changing the variables of integration in
the path integral are di↵erent from the conventional classical equations obtained by varying
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where Mpl = (8⇡GN)�1/2 is the reduced Planck mass, and R and g are the Ricci scalar and
the metric determinant respectively. The matter fields are position independent and the
volume integral (an overall volume factor) has been removed.

Finding the paths that extremize the action leads to the standard Friedmann equations.
For example, for a scalar field � with matter action Lmatter = �1
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ä

N2a
+ 2M2

pl

ȧ2

N2a2
� 4M2

pl

ȧṄ
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N

N
)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
the classical Hamiltonian. On the metric side, only a(t) has a conjugate momentum, ⇡ =
�L/�ȧ = �12M2

pl
aȧ/N , since �L/�Ṅ = 0. The scalar’s conjugate variable is ⇡� = �L/��̇ =
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⇡ȧ+ ⇡��̇� L

i
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is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.
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the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.

3.1 Canonical Quantization

Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
is something like a gauge degree of freedom. To canonically quantize, let’s first look at
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Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.
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an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
action Sms and redefine the path for this integral N(t) ! N(t)+�N(t) (with vanishing �N at
the boundaries), we would require the shift in the action Sms [N, a,�] ! Sms [N + �N, a,�]
to be trivial. However, it is already true that Sms [N + �N, a,�] = Sms [N, a,�] for any
path. This is because a change in path of N can be compensated for by defining a new time
coordinate integration variable dt0 = (1 + �N
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)dt. This suggests that in the quantum theory,

the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.
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Now we want a quantum version of this theory. We see that Ṅ(t) does not appear in the
action and thus is not dynamical. It also plays a central role in the reparameterization
invariance of the time coordinate, (namely, dt ! f(t)dt and N(t) ! N(t)/f(t)), and thus
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form:
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Upon fixing a time coordinate by choosing, for example, N(t) = 1, the above reduce to
Friedmann’s first and second equations and the equation of motion for the scalar.

While the above is the standard procedure, we have been a bit cavalier. If we take the
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path. This is because a change in path of N can be compensated for by defining a new time
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the path integral does not guarantee this first equation in the classical limit. We will see
how this bears out below.
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h
⇡ȧ+ ⇡��̇� L

i

ȧ=··· ,�̇=···

= � N

24M2
pl
a
⇡2 +

N

2a3
⇡2
�
+Na3V (�) (12)

is interestingly �N(�Sms/�N) ⌘ NH̃, or N times the function that vanishes by the first
Friedmann equation (9) when replacing ȧ and �̇ by functions of their conjugate momenta.

In the quantum theory, there is now the issue of what to do with N , which appears as
an auxiliary field that naively commutes with all operators. The natural thing to do is fix
a gauge, noting that the Schrödinger equation with the above Hamiltonian would be of the
form:

i@t| i = N(t) ˆ̃H| i (13)

and is covariant with respect to time reparameterizations. Thus, to define the quantum
theory, a sensible choice is to pick a time coordinate by way of fixing N(t).
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Analysing this auxiliary fluid

Thus, in the coherent state basis, the path integral for quantum gravity should read:

〈πfγf · · · |e−iĤt|πiγi · · · 〉 =
∫ πf ,γf

πi,γi

DπDγ · · · ei
∫
d4x[ 12 (γ̇ijπij−π̇ijγij)−H[π,γ]]+··· (32)

where the various elipses represent the state quantum numbers on the left side of the equa-
tion, and the measure parts and action parts for any and all matter fields on the right side.
This path integral can be though of as a functional of the final values πf and γf , and this
functional is sharply peaked around the classical expectation values of these functions. The
key point is that the six degrees of freedom and their conjugates only produce (in expectation
value) six pairs of Hamilton equations of motion, which correspond to the spatial parts of
Einstein’s equations.

Minimizing the variation of the classical action with respect to the metric led to the
equations

√
−g(Gµν −8πGNT µν) = 0. In synchronous gauge, we have found only the spatial

equations emerge from the quantum field theory in the classical limit. Let’s package the
loosening of restriction as we did for minisuperspace:

G00 = 8πGNT
00 + 8πGN

H√
−g

G0i = 8πGNT
0i + 8πGN

Pi

√
−g

Gij = 8πGNT
ij

for, as of yet, arbitrary functions H and Pi. In this language, we define an auxiliary energy-
momentum tensor

T µν
aux =

1√
−g





H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0



 (33)

Now from these constructed classical equations, we can find restrictions on Taux by noting
that the tensor T is covariantly conserved and G satisfies the Bianchi identity. Thus, since
∇µ(Gµν − 8πGNT µν) = 0, then:

0 = ∇µT
µν
aux = ∂µT

µν
aux + Γµ

µλT
λν
aux + Γν

µλT
µλ
aux (34)

These four equations simplify in this gauge, as Γ0
00 = Γ0

0i = Γi
00 = 0. We can use this

condition to constrain the functions [H,P]. Using the identity Γµ
µν = −

√
−g∂ν(1/

√
−g) and

defining tµνaux ≡
√
−gT µν

aux, we can write the ν = 0 and ν = i equations respectively as

∂0t
00
aux + ∂it

i0
aux = 0

∂0t
0i
aux + 2Γi

j0t
j0
aux = 0

which (noting that γij ≡ gij, γ = −g, and γijγjk = δik in this gauge) simplifies further to

∂0H = −∂iPi

∂0
(
γijP

j
)
= 0

We thus see that this auxiliary shadow matter is made up of three time-independent func-
tions and one whose time dependence is fixed by the other three (and the metric).
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a limit of the quantum field theory, the imposed Hamilto-
nian constraint that physical states are annihilated by the
Hamiltonian, H |Ψ〉 = 0, presents a significant ‘problem of
time’. The Schrödinger equation in this case is now triv-
ial and dynamical classical states (coherent states) cannot
be constructed. There have been attempts to adapt these
rules to allow for some version of time evolution, often de-
pending on the asymptotics of the state [7] (e.g., see [8] for
a recent review of these issues in quantum cosmology).

A simple solution to the problem of time, advocated
in [1, 2], is to not impose the constraints on the states
and allow for the full implied Hilbert space. One could
then choose to study gravitational systems where the con-
straints are still satisfied at the expectation value level,
e.g. 〈Ψ|H |Ψ〉 = 0. This reproduces the standard classical
constraint without imposing the condition that the system
is in an eigenstate of H , thus allowing its evolution as per
the normal notion of time evolution in quantum mechanics.
More generally, however, one could study systems where
the constraints are not satisfied even in expectation value
[9]. The most general classical limit of Einstein’s equations
is, in synchronous gauge

√
−g Gµν = 8πGN

√
−g (T µν + T µν

aux), (1)

where

√
−g T µν

aux ≡









H P1 P2 P3

P1 0 0 0
P2 0 0 0
P3 0 0 0









(2)

and where H and Pi are functions of spacetime. The
Bianchi identity ∇µGµν = 0 and a covariantly conserved
energy-momentum tensor ∇µT µν = 0, as a result of the
equations of motion of the other fields, imply that this
auxiliary tensor is also covariantly conserved, setting the
following conditions in synchronous gauge:

∂0H = −∂iP
i (3)

∂0
(

gijP
j
)

= 0. (4)

We now study the physical consequences of these addi-
tional source terms.

Let us first analyze the case where the Pi = 0. Then,
from Eq. (3), we see that H = H(x) is independent of time.
If H is everywhere positive, we can additionally remove the
remaining coordinate freedom in the synchronous gauge
and make a spatial coordinate redefinition x → ξ(x) such
that the determinant ||∂xi/∂ξj|| = H/H(x), where H is
a constant. Thus, in this case, the spatial dependence in
H can be entirely moved into the metric. We will briefly
discuss non-positive definite H later in the article.

We can show that this new source term will reproduce
the effects of dark matter by noting that our auxiliary
energy-momentum tensor can be written as

T µν
aux = ρauxu

µuν (5)

in which ρaux = H/
√
−g and uµ = {1, 0, 0, 0} in syn-

chronous gauge. The energy momentum tensor (5) is

recognizably the form of a general pressureless dust,
T µν = ρuµuν . In synchronous gauge, a dust with zero ve-
locity will satisfy

0 = ∇µT
µν

= ∂µ(ρu
µuν) + Γµ

µλρu
λuν + Γν

µλρu
µuλ

= δν0∂0ρ+ (1/
√
−g)(∂0

√
−g)δν0ρ

= (1/
√
−g)∂0(

√
−gρ)δν0

where in the third line we used the relation ∂λ
√
−g =

Γµ
µλ

√
−g and the fact that Γ0

µ0 = 0 in synchronous gauge.
The above implies ρ = f(x)/

√
−g is the most general form

of pressureless, zero-velocity dust in synchronous gauge
(where again we could choose to absorb the x dependence
into the metric). That is, ρaux behaves precisely like pres-
sureless dust.

To reinforce the above point, consider the following
equation

0 = ∇µT
µν
aux = ∇µ(ρaux u

µ)uν + ρaux u
µ∇µu

ν . (6)

In synchronous gauge it is particularly easy to see
that the four-velocity uµ satisfies the geodesic equation,
uµ∇µuν = 0, and thus the density current ρauxuµ is co-
variantly conserved

∇µ(ρaux u
µ) = 0 . (7)

Being tensor equations, these are true in any gauge. Thus,
this system will evolve as if there is a fluid component of
pressureless dust that undergoes geodesic evolution. As-
suming our ansatz of nearly homogeneous initial condi-
tions, we predict evolution equivalent to that of cold dark
matter.

Since simulations of dark matter implicitly assume the
dynamics are independent of the short-wavelength physics
(in fact it is well known that short-wavelength nonlinear-
ity quickly decouples from long-wavelength evolution [10]),
the usual machinery of N−body simulations or perturba-
tion theory [11] can be used to study the non-linear evolu-
tion here as well. Similar to the case of real dark matter,
to avoid issues of potential coordinate singularities in the
synchronous gauge, one can transform the equations to
another gauge such as Newtonian gauge [12]. In the quan-
tum theory, this amounts to identifying a basis of coherent
states that smoothly tracks the classical evolution. In this
way, for the case of both shadow and real dark matter, a
system with initial conditions set in the synchronous gauge
can be evolved to arbitrary times in the future.

One ultimately expects that virialized structures such as
halos will form exactly as in the standard cold dark matter
picture. Barring standard gravitational effects (e.g., tidal
stripping), the effect of baryons or other new physics unre-
lated to this type of matter, structures may form down to
very small scales, potentially even below the free-streaming
length of more conventional dark matter candidates such
as weakly interacting massive particles.

We now proceed to consider the most general case of
the auxiliary tensor where Pi (= 0. The source term can be
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written in the form

T µν
aux = ρaux u

µuν + qµuν + uµqν , (8)

where the new spatial vector qµ satisfies qµuµ = 0 and
qµqµ ≥ 0. In synchronous gauge, we take ρaux = H/

√
−g,

uµ = {1, 0, 0, 0}, and qµ = (0,P1,P2,P3)/
√
−g. Note now

both H and Pi are generally functions of space and time.
The covariant conservation of this tensor now gives

0 = ∇µT
µν
aux (9)

= ∇µ(ρaux u
µ)uν + ρaux u

µ∇µu
ν

+(∇µq
µ)uν + qµ∇µu

ν

+(∇µu
µ) qν + uµ∇µq

ν .

The density ρaux is now not covariantly conserved, which
we can see by contracting (9) with uν :

∇µ(ρauxu
µ) = −∇µq

µ , (10)

where we have imposed the geodesic equation and the var-
ious identities above. Similarly, contracting onto the or-
thogonal direction to uν with the projector uνuλ+gνλ, we
have a constraint on qµ:

0 = qµ∇µuλ + (∇µu
µ) qλ + uµ∇µqλ . (11)

In synchronous gauge, eqs. (10) and (11) simply reduce to
eqs. (3) and (4), respectively. Thus we see that there is
an additional effect on the auxiliary density in this case.
While the four-vector field uµ follows geodesics by design,
the qµ acts as a ‘heat flux’ on the density ρaux causing
an additional evolution of the effective mass density of the
fluid.

Let us now analyse the effect of this more general source
term within our comological ansatz. We write the source
terms as H(x) ≡ H+ δH(x) and Pi(x) ≡ δPi(x), where the
δ’s represent linear-order perturbations around a homoge-
neous and isotropic background. Here, taking the spatial
metric at leading order to be gij ∼ a(t)2δij , we can see
from the constraint equation (4) that ∂0(δPia2) ' 0, or
δPi/

√
−g ∼ a−5. Thus this contribution to Taux redshifts

quickly even outside the horizon.
While it is reasonable to consider the δPi terms negligi-

ble at late times for a wide range of initial conditions, it
is interesting that for a flat spectrum, they may in prin-
ciple be important for gravitational bound states at the
smallest scales. In addition, the consequences of non-zero
δPi(x, t) at early times could be much more dramatic. A
uniform δPi in the early universe would be a source of
anisotropy. The most stringent constraints should thus
come from measurements of the primordial abundance of
light elements and big-bang nucleosynthesis, as current
measurements (except for 7Li) favor a homogeneous uni-
verse that dilutes like radiation with few percent precision
at z ∈ [108 − 1010] [13, 14]. However, we note that most
analyses focus on the predictions of the Bianchi Type I uni-
verse, which does not describe the dynamics of the model
we are considering here. For more generic δPi, estimating
the constraints would require a dedicated analysis.

Shadow Charges in General Relativity Standard electro-
magnetism can be formulated in the Hamiltonian lan-
guage, in which case Ampère’s law comes from Hamil-
ton’s equations of motion. On the other hand, Gauss’ law,
∂µFµ0 − J0 = 0, is a constraint in flat space. The effect
of not enforcing this constraint allows for a source term
that behaves as a static charge density [3] (for some appli-
cations of the Hamiltonian formalism and loosening this
constraint in electromagnetism, see [15, 16]). In curved
space, the equations of motion can similarly be supple-
mented by an auxiliary charge density

∇µF
µν = (Jν + Jν

aux) (12)

where ∇µ is now a covariant derivative and Jν is the four-
current associated to standard matter. Taking the diver-
gence of Equation (12), and accounting for charge conser-
vation among normal charged matter, we have

∇µJ
µ
aux = 0 (13)

In synchronous gauge, we can define

√
−gJµ

aux ≡ {J, 0, 0, 0} (14)

where (13) requires J = J(x) to be time-independent [3].
The auxiliary current can thus be written as

Jµ
aux = ρchauxv

µ (15)

with ρchaux = J/
√
−g and vµ = {1, 0, 0, 0} in synchronous

gauge. Because vµ∇µvν = 0 in all coordinate systems,
this auxiliary charge density follows geodesics and thus
does not respond directly to electromagnetic forces. In
addition, the conservation equation (13) is equivalent to
the auxiliary matter conservation equation (7). Thus, this
new fluid acts like a charged component of the auxiliary
matter.

In addition, while the shadow charge itself does not rep-
resent a physical field in the universe, the electric fields it
sources are and thus contribute an additional source for the
metric via Einstein’s equations. The energy-momentum
tensor for all electromagnetic fields and charged matter is

T µν = Eµν + T µν
matter ≡ FµλF ν

λ −
1

4
gµνFλσFλσ + T µν

matter

(16)
If we include the violation of Gauss’ law à la (12), we find
this energy-momentum tensor is not covariantly conserved

∇µT
µν = ∇µEµν +∇µT

µν
matter

= F ν
λ(J

λ + Jλ
aux)− F ν

λJ
λ (17)

where we have used

Fµλ∇µF
ν
λ −

1

2
gµνFλσFλσ = 0 (18)

which can be shown using the Bianchi identity.
Therefore, in order to guarantee the covariant conserva-

tion of the full energy-momentum tensor, we must add a
new component T µν

aux, describing the contribution of the
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T µν
aux = ρaux u

µuν + qµuν + uµqν , (8)

where the new spatial vector qµ satisfies qµuµ = 0 and
qµqµ ≥ 0. In synchronous gauge, we take ρaux = H/

√
−g,

uµ = {1, 0, 0, 0}, and qµ = (0,P1,P2,P3)/
√
−g. Note now

both H and Pi are generally functions of space and time.
The covariant conservation of this tensor now gives

0 = ∇µT
µν
aux (9)

= ∇µ(ρaux u
µ)uν + ρaux u

µ∇µu
ν

+(∇µq
µ)uν + qµ∇µu

ν

+(∇µu
µ) qν + uµ∇µq

ν .

The density ρaux is now not covariantly conserved, which
we can see by contracting (9) with uν :

∇µ(ρauxu
µ) = −∇µq

µ , (10)

where we have imposed the geodesic equation and the var-
ious identities above. Similarly, contracting onto the or-
thogonal direction to uν with the projector uνuλ+gνλ, we
have a constraint on qµ:

0 = qµ∇µuλ + (∇µu
µ) qλ + uµ∇µqλ . (11)

In synchronous gauge, eqs. (10) and (11) simply reduce to
eqs. (3) and (4), respectively. Thus we see that there is
an additional effect on the auxiliary density in this case.
While the four-vector field uµ follows geodesics by design,
the qµ acts as a ‘heat flux’ on the density ρaux causing
an additional evolution of the effective mass density of the
fluid.

Let us now analyse the effect of this more general source
term within our comological ansatz. We write the source
terms as H(x) ≡ H+ δH(x) and Pi(x) ≡ δPi(x), where the
δ’s represent linear-order perturbations around a homoge-
neous and isotropic background. Here, taking the spatial
metric at leading order to be gij ∼ a(t)2δij , we can see
from the constraint equation (4) that ∂0(δPia2) ' 0, or
δPi/

√
−g ∼ a−5. Thus this contribution to Taux redshifts

quickly even outside the horizon.
While it is reasonable to consider the δPi terms negligi-

ble at late times for a wide range of initial conditions, it
is interesting that for a flat spectrum, they may in prin-
ciple be important for gravitational bound states at the
smallest scales. In addition, the consequences of non-zero
δPi(x, t) at early times could be much more dramatic. A
uniform δPi in the early universe would be a source of
anisotropy. The most stringent constraints should thus
come from measurements of the primordial abundance of
light elements and big-bang nucleosynthesis, as current
measurements (except for 7Li) favor a homogeneous uni-
verse that dilutes like radiation with few percent precision
at z ∈ [108 − 1010] [13, 14]. However, we note that most
analyses focus on the predictions of the Bianchi Type I uni-
verse, which does not describe the dynamics of the model
we are considering here. For more generic δPi, estimating
the constraints would require a dedicated analysis.

Shadow Charges in General Relativity Standard electro-
magnetism can be formulated in the Hamiltonian lan-
guage, in which case Ampère’s law comes from Hamil-
ton’s equations of motion. On the other hand, Gauss’ law,
∂µFµ0 − J0 = 0, is a constraint in flat space. The effect
of not enforcing this constraint allows for a source term
that behaves as a static charge density [3] (for some appli-
cations of the Hamiltonian formalism and loosening this
constraint in electromagnetism, see [15, 16]). In curved
space, the equations of motion can similarly be supple-
mented by an auxiliary charge density

∇µF
µν = (Jν + Jν

aux) (12)

where ∇µ is now a covariant derivative and Jν is the four-
current associated to standard matter. Taking the diver-
gence of Equation (12), and accounting for charge conser-
vation among normal charged matter, we have

∇µJ
µ
aux = 0 (13)

In synchronous gauge, we can define

√
−gJµ

aux ≡ {J, 0, 0, 0} (14)

where (13) requires J = J(x) to be time-independent [3].
The auxiliary current can thus be written as

Jµ
aux = ρchauxv

µ (15)

with ρchaux = J/
√
−g and vµ = {1, 0, 0, 0} in synchronous

gauge. Because vµ∇µvν = 0 in all coordinate systems,
this auxiliary charge density follows geodesics and thus
does not respond directly to electromagnetic forces. In
addition, the conservation equation (13) is equivalent to
the auxiliary matter conservation equation (7). Thus, this
new fluid acts like a charged component of the auxiliary
matter.

In addition, while the shadow charge itself does not rep-
resent a physical field in the universe, the electric fields it
sources are and thus contribute an additional source for the
metric via Einstein’s equations. The energy-momentum
tensor for all electromagnetic fields and charged matter is

T µν = Eµν + T µν
matter ≡ FµλF ν

λ −
1

4
gµνFλσFλσ + T µν

matter

(16)
If we include the violation of Gauss’ law à la (12), we find
this energy-momentum tensor is not covariantly conserved

∇µT
µν = ∇µEµν +∇µT

µν
matter

= F ν
λ(J

λ + Jλ
aux)− F ν

λJ
λ (17)

where we have used

Fµλ∇µF
ν
λ −

1

2
gµνFλσFλσ = 0 (18)

which can be shown using the Bianchi identity.
Therefore, in order to guarantee the covariant conserva-

tion of the full energy-momentum tensor, we must add a
new component T µν

aux, describing the contribution of the
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written in the form

T µν
aux = ρaux u

µuν + qµuν + uµqν , (8)

where the new spatial vector qµ satisfies qµuµ = 0 and
qµqµ ≥ 0. In synchronous gauge, we take ρaux = H/

√
−g,

uµ = {1, 0, 0, 0}, and qµ = (0,P1,P2,P3)/
√
−g. Note now

both H and Pi are generally functions of space and time.
The covariant conservation of this tensor now gives

0 = ∇µT
µν
aux (9)

= ∇µ(ρaux u
µ)uν + ρaux u

µ∇µu
ν

+(∇µq
µ)uν + qµ∇µu

ν

+(∇µu
µ) qν + uµ∇µq

ν .

The density ρaux is now not covariantly conserved, which
we can see by contracting (9) with uν :

∇µ(ρauxu
µ) = −∇µq

µ , (10)

where we have imposed the geodesic equation and the var-
ious identities above. Similarly, contracting onto the or-
thogonal direction to uν with the projector uνuλ+gνλ, we
have a constraint on qµ:

0 = qµ∇µuλ + (∇µu
µ) qλ + uµ∇µqλ . (11)

In synchronous gauge, eqs. (10) and (11) simply reduce to
eqs. (3) and (4), respectively. Thus we see that there is
an additional effect on the auxiliary density in this case.
While the four-vector field uµ follows geodesics by design,
the qµ acts as a ‘heat flux’ on the density ρaux causing
an additional evolution of the effective mass density of the
fluid.

Let us now analyse the effect of this more general source
term within our comological ansatz. We write the source
terms as H(x) ≡ H+ δH(x) and Pi(x) ≡ δPi(x), where the
δ’s represent linear-order perturbations around a homoge-
neous and isotropic background. Here, taking the spatial
metric at leading order to be gij ∼ a(t)2δij , we can see
from the constraint equation (4) that ∂0(δPia2) ' 0, or
δPi/

√
−g ∼ a−5. Thus this contribution to Taux redshifts

quickly even outside the horizon.
While it is reasonable to consider the δPi terms negligi-

ble at late times for a wide range of initial conditions, it
is interesting that for a flat spectrum, they may in prin-
ciple be important for gravitational bound states at the
smallest scales. In addition, the consequences of non-zero
δPi(x, t) at early times could be much more dramatic. A
uniform δPi in the early universe would be a source of
anisotropy. The most stringent constraints should thus
come from measurements of the primordial abundance of
light elements and big-bang nucleosynthesis, as current
measurements (except for 7Li) favor a homogeneous uni-
verse that dilutes like radiation with few percent precision
at z ∈ [108 − 1010] [13, 14]. However, we note that most
analyses focus on the predictions of the Bianchi Type I uni-
verse, which does not describe the dynamics of the model
we are considering here. For more generic δPi, estimating
the constraints would require a dedicated analysis.
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magnetism can be formulated in the Hamiltonian lan-
guage, in which case Ampère’s law comes from Hamil-
ton’s equations of motion. On the other hand, Gauss’ law,
∂µFµ0 − J0 = 0, is a constraint in flat space. The effect
of not enforcing this constraint allows for a source term
that behaves as a static charge density [3] (for some appli-
cations of the Hamiltonian formalism and loosening this
constraint in electromagnetism, see [15, 16]). In curved
space, the equations of motion can similarly be supple-
mented by an auxiliary charge density

∇µF
µν = (Jν + Jν

aux) (12)

where ∇µ is now a covariant derivative and Jν is the four-
current associated to standard matter. Taking the diver-
gence of Equation (12), and accounting for charge conser-
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new fluid acts like a charged component of the auxiliary
matter.

In addition, while the shadow charge itself does not rep-
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thogonal direction to uν with the projector uνuλ+gνλ, we
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0 = qµ∇µuλ + (∇µu
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Let us now analyse the effect of this more general source
term within our comological ansatz. We write the source
terms as H(x) ≡ H+ δH(x) and Pi(x) ≡ δPi(x), where the
δ’s represent linear-order perturbations around a homoge-
neous and isotropic background. Here, taking the spatial
metric at leading order to be gij ∼ a(t)2δij , we can see
from the constraint equation (4) that ∂0(δPia2) ' 0, or
δPi/

√
−g ∼ a−5. Thus this contribution to Taux redshifts

quickly even outside the horizon.
While it is reasonable to consider the δPi terms negligi-

ble at late times for a wide range of initial conditions, it
is interesting that for a flat spectrum, they may in prin-
ciple be important for gravitational bound states at the
smallest scales. In addition, the consequences of non-zero
δPi(x, t) at early times could be much more dramatic. A
uniform δPi in the early universe would be a source of
anisotropy. The most stringent constraints should thus
come from measurements of the primordial abundance of
light elements and big-bang nucleosynthesis, as current
measurements (except for 7Li) favor a homogeneous uni-
verse that dilutes like radiation with few percent precision
at z ∈ [108 − 1010] [13, 14]. However, we note that most
analyses focus on the predictions of the Bianchi Type I uni-
verse, which does not describe the dynamics of the model
we are considering here. For more generic δPi, estimating
the constraints would require a dedicated analysis.

Shadow Charges in General Relativity Standard electro-
magnetism can be formulated in the Hamiltonian lan-
guage, in which case Ampère’s law comes from Hamil-
ton’s equations of motion. On the other hand, Gauss’ law,
∂µFµ0 − J0 = 0, is a constraint in flat space. The effect
of not enforcing this constraint allows for a source term
that behaves as a static charge density [3] (for some appli-
cations of the Hamiltonian formalism and loosening this
constraint in electromagnetism, see [15, 16]). In curved
space, the equations of motion can similarly be supple-
mented by an auxiliary charge density

∇µF
µν = (Jν + Jν

aux) (12)

where ∇µ is now a covariant derivative and Jν is the four-
current associated to standard matter. Taking the diver-
gence of Equation (12), and accounting for charge conser-
vation among normal charged matter, we have

∇µJ
µ
aux = 0 (13)

In synchronous gauge, we can define

√
−gJµ

aux ≡ {J, 0, 0, 0} (14)

where (13) requires J = J(x) to be time-independent [3].
The auxiliary current can thus be written as

Jµ
aux = ρchauxv

µ (15)

with ρchaux = J/
√
−g and vµ = {1, 0, 0, 0} in synchronous

gauge. Because vµ∇µvν = 0 in all coordinate systems,
this auxiliary charge density follows geodesics and thus
does not respond directly to electromagnetic forces. In
addition, the conservation equation (13) is equivalent to
the auxiliary matter conservation equation (7). Thus, this
new fluid acts like a charged component of the auxiliary
matter.

In addition, while the shadow charge itself does not rep-
resent a physical field in the universe, the electric fields it
sources are and thus contribute an additional source for the
metric via Einstein’s equations. The energy-momentum
tensor for all electromagnetic fields and charged matter is

T µν = Eµν + T µν
matter ≡ FµλF ν
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If we include the violation of Gauss’ law à la (12), we find
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which can be shown using the Bianchi identity.
Therefore, in order to guarantee the covariant conserva-

tion of the full energy-momentum tensor, we must add a
new component T µν

aux, describing the contribution of the
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measurements (except for 7Li) favor a homogeneous uni-
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at z ∈ [108 − 1010] [13, 14]. However, we note that most
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verse, which does not describe the dynamics of the model
we are considering here. For more generic δPi, estimating
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new fluid acts like a charged component of the auxiliary
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the qµ acts as a ‘heat flux’ on the density ρaux causing
an additional evolution of the effective mass density of the
fluid.
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analyses focus on the predictions of the Bianchi Type I uni-
verse, which does not describe the dynamics of the model
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the qµ acts as a ‘heat flux’ on the density ρaux causing
an additional evolution of the effective mass density of the
fluid.

Let us now analyse the effect of this more general source
term within our comological ansatz. We write the source
terms as H(x) ≡ H+ δH(x) and Pi(x) ≡ δPi(x), where the
δ’s represent linear-order perturbations around a homoge-
neous and isotropic background. Here, taking the spatial
metric at leading order to be gij ∼ a(t)2δij , we can see
from the constraint equation (4) that ∂0(δPia2) ' 0, or
δPi/

√
−g ∼ a−5. Thus this contribution to Taux redshifts

quickly even outside the horizon.
While it is reasonable to consider the δPi terms negligi-

ble at late times for a wide range of initial conditions, it
is interesting that for a flat spectrum, they may in prin-
ciple be important for gravitational bound states at the
smallest scales. In addition, the consequences of non-zero
δPi(x, t) at early times could be much more dramatic. A
uniform δPi in the early universe would be a source of
anisotropy. The most stringent constraints should thus
come from measurements of the primordial abundance of
light elements and big-bang nucleosynthesis, as current
measurements (except for 7Li) favor a homogeneous uni-
verse that dilutes like radiation with few percent precision
at z ∈ [108 − 1010] [13, 14]. However, we note that most
analyses focus on the predictions of the Bianchi Type I uni-
verse, which does not describe the dynamics of the model
we are considering here. For more generic δPi, estimating
the constraints would require a dedicated analysis.

Shadow Charges in General Relativity Standard electro-
magnetism can be formulated in the Hamiltonian lan-
guage, in which case Ampère’s law comes from Hamil-
ton’s equations of motion. On the other hand, Gauss’ law,
∂µFµ0 − J0 = 0, is a constraint in flat space. The effect
of not enforcing this constraint allows for a source term
that behaves as a static charge density [3] (for some appli-
cations of the Hamiltonian formalism and loosening this
constraint in electromagnetism, see [15, 16]). In curved
space, the equations of motion can similarly be supple-
mented by an auxiliary charge density

∇µF
µν = (Jν + Jν

aux) (12)

where ∇µ is now a covariant derivative and Jν is the four-
current associated to standard matter. Taking the diver-
gence of Equation (12), and accounting for charge conser-
vation among normal charged matter, we have

∇µJ
µ
aux = 0 (13)

In synchronous gauge, we can define

√
−gJµ

aux ≡ {J, 0, 0, 0} (14)

where (13) requires J = J(x) to be time-independent [3].
The auxiliary current can thus be written as

Jµ
aux = ρchauxv

µ (15)

with ρchaux = J/
√
−g and vµ = {1, 0, 0, 0} in synchronous

gauge. Because vµ∇µvν = 0 in all coordinate systems,
this auxiliary charge density follows geodesics and thus
does not respond directly to electromagnetic forces. In
addition, the conservation equation (13) is equivalent to
the auxiliary matter conservation equation (7). Thus, this
new fluid acts like a charged component of the auxiliary
matter.

In addition, while the shadow charge itself does not rep-
resent a physical field in the universe, the electric fields it
sources are and thus contribute an additional source for the
metric via Einstein’s equations. The energy-momentum
tensor for all electromagnetic fields and charged matter is

T µν = Eµν + T µν
matter ≡ FµλF ν

λ −
1

4
gµνFλσFλσ + T µν

matter

(16)
If we include the violation of Gauss’ law à la (12), we find
this energy-momentum tensor is not covariantly conserved

∇µT
µν = ∇µEµν +∇µT

µν
matter

= F ν
λ(J

λ + Jλ
aux)− F ν

λJ
λ (17)

where we have used

Fµλ∇µF
ν
λ −

1

2
gµνFλσFλσ = 0 (18)

which can be shown using the Bianchi identity.
Therefore, in order to guarantee the covariant conserva-

tion of the full energy-momentum tensor, we must add a
new component T µν

aux, describing the contribution of the

A charge density that follows geodesics, does not 
respond to electromagnetic forces

Modes outside the horizon redshift like matter

Inside the horizon, rich pheno with complex dynamics


