Axion detection using a ferromagnetic phase of superfluid Helium-3

- **Risshin Okabe** (Kavli IPMU, U. Tokyo)
- Based on *JHEP* 09 (2024) 191 with **So Chigusa** (MIT), **Dan Kondo** (IPMU), Hitoshi Murayama (Berkeley, IPMU), Hiroyuki Sudo (ISSP)
 - Hitoshi Fest, 17th Dec. 2024

Hitoshi and condensed matter physics

Hitoshi is expert not only in particle physics but also in condensed matter physics.

Axion detection using a ferromagnetic phase of superfluid Helium-3

Risshin Okabe (IPMU, U. Tokyo)

	arXiv:2309.09160 [pdf, other] hep-ph cond-mat.supr-con hep-ex doi 10.1007/JHEP09(2024)191
	Axion detection via superfluid ³ He ferromagnetic phase and quantum measurement techniques
	Authors: So Chigusa, Dan Kondo, Hitoshi Murayama, Risshin Okabe, Hiroyuki Sudo
	Submitted 1 November, 2024; v1 submitted 17 September, 2023; originally announced September 2023.
	iournal ref: JHEP 09 (2024) 191
2.	arXiv:1405.0997 [pdf. ps. other] hep-th cond-mat.other cond-mat.guant-gas cond-mat.supr-con hep-ph doi 10.1103/PhysRevD.90.12170
	Englert-Brout-Higgs Mechanism in Nonrelativistic Systems
	Authors: Haruki Watanabe, Hitoshi Murayama
	Submitted 25 July, 2014; v1 submitted 5 May, 2014; originally announced May 2014.
	Comments: 5 + 2 pages, including Supplemental Materials; v3: discussions clarified
	Report number: IPMU14-0109, UCB-PTH-14/30 iournal ref: Phys. Rev. D 90, 121703(R) (2014)
3.	arXiv:1403.3365 [pdf. ps. other] ben-th cond-mat other ben-ph doi: 10.1103/PhysRevD.89.101701
	Nambu-Goldstone bosons with fractional-power dispersion relations
	Authors: Haruki Watanabe, Hitoshi Murayama
	Submitted 1 May, 2014; v1 submitted 13 March, 2014; originally announced March 2014.
	Comments: 5 pages, 1 figure. v2: references added; published version
	Report number: IPMU14-0058,UCB-PTH14/05
	ournal ret: Phys. Rev. D 89, 101701(R) (2014)
4.	arXiv:1402.7066 [pdf, ps, other] hep-th cond-mat.other cond-mat.quant-gas cond-mat.str-el hep-ph doi 10.1103/PhysRevX.4.031057
	Effective Lagrangian for Nonrelativistic Systems
	Authors: Haruki Watanabe, Hitoshi Murayama
	Submitted 19 September, 2014; v1 submitted 27 February, 2014; originally announced February 2014.
	Report number: IPMU14-0043, UCB-PTH14/03
	ournal ref: Phys. Rev. X 4, 031057 (2014)
5.	arXiv:1401.8139 [pdf, ps, other] hep-th cond-mat.other cond-mat.quant-gas hep-ph doi 10.1103/PhysRevLett.112.191804
	Noncommuting Momenta of Topological Solitons
	Authors: Haruki Watanabe, Hitoshi Murayama
	Submitted 14 May, 2014; v1 submitted 31 January, 2014; originally announced January 2014.
	Comments: 5 +1 pages, including Supplemental Material; v4: new references added, published version
	Report number: UCB-PTH 14/02, IPMU14-0019
j.	arXiv:1303.1527 [pdf, ps, other] hep-th cond-mat.quant-gas cond-mat.stat-mech hep-ph doi 10.1103/PhysRevLett.111.021601
	Massive Nambu-Goldstone Bosons
	Authors: Haruki Watanabe, Tomas Brauner, Hitoshi Murayama Submitted 2 July 2013: v1 submitted 6 March 2013: originally appounded March 2013
	Comments: 5 pages, REVTeX 4.1; v2: text length reduced upon editor's request, the effective Lagrangian section largely rewritten, other minor changes throughout the text; version accepted to PRL
	Report number: BI-TP 2013/02, IPMU13-0056
	ournal ref: Phys.Rev.Lett.111:021601(2013)
7.	arXiv:1302.4800 [pdf, ps, other] cond-mat.other hep-th quant-ph doi 10.1103/PhysRevLett.110.181601
	Redundancies in Nambu-Goldstone Bosons
	Authors: Haruki Watanabe, Hitoshi Murayama
	Submitted 5 April, 2013; v1 submitted 19 February, 2013; originally announced February 2013.
	Comments: 4 pages; discussion improved, new references added
	ournal ref: Phys. Rev. Lett. 110, 181601 (2013)
2	arXiv:1203.0609 [ndf.ns.other] [hen-th] cond-mat other [hen-nh] [doi: 10.1103/PhysRevLett.108.251602
	Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance
	Authors: Haruki Watanabe, Hitoshi Murayama
	Submitted 12 June, 2012; v1 submitted 3 March, 2012; originally announced March 2012.
	Comments: 5 pages, REVTeX 4.1; v3: published version
	ournal ref. Phys. Rev. Lett. 108, 251602 (2012)

[Hitoshi's papers in cond-mat]

Axion: in a nutshell

- Strong CP problem
 - A CP-breaking in Quantum ChromoDynamics is unnaturally tiny.
- This can be solved by Peccei Quinn mechanism.
 - introduce an additional global symmetry $U(1)_{PO}$
 - spontaneous symmetry breaking of $U(1)_{PO}$ generates a (pseudo-)Nambu – Goldstone boson = Axion
- **Axion can be Dark Matter (DM)**
 - preferred mass region: $m_a \sim 10^{-6} 10^{-3} \,\mathrm{eV}$

Axion detection using a ferromagnetic phase of superfluid Helium-3

Constraints on axion-photon coupling

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

Constraints on axion-neutron coupling

Risshin Okabe (IPMU, U. Tokyo)

We propose a novel experiment

to explore axion-neutron coupling

Axion detection using a ferromagnetic phase of superfluid Helium-3

Risshin Okabe (IPMU, U. Tokyo)

using superfluid Helium-3

Spins of protons and electrons are canceled Interaction between axion & ³He = Interaction between axion & neutron

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

Cooper pair (spin-triplet p-wave state)

Superfluid

Superfluid phases of Helium-3

A1-phase

- Ferromagnetic phase for nuclear spin
- has a magnon mode (= collective excitation of spins)

[Watanabe & Murayama (2012), Hidaka (2013)]

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

Magnon excitation by axions

Axion-neutron interaction induces (homogeneous) magnon modes

Resonantly enhanced when

 $= \gamma_{3He} B_{2}$

By applying magnetic fields of O(10) T, μeV axions can be probed using this resonance

$m_a = \text{magnon energy gap } \omega_L$

$$_z \simeq 1.3 \,\mu \mathrm{eV} \left(\frac{B_z}{10 \,\mathrm{T}} \right)$$

Axion detection using a ferromagnetic phase of superfluid Helium-3

Cavity

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

1. Put superfluid 3He sample in a cavity

2. Apply magnetic field to align nuclear spins

Experimental setup

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

1. Put a superfluid ³He sample in a cavity

2. Apply a magnetic field to align the nuclear spins

3. Axion excites "magnon" mode

Hitoshi Fest (17th Dec. 2024)

How to detect magnons

Magnon modes mix with cavity photons through interaction $\gamma \vec{s}_n \cdot \vec{B}_{cav}$

- "magnon polariton"
- Mixing is maximized when

Magnon energy gap ω_L = cavity frequency ω_{cav}

 $\frac{2\pi}{\omega_{\rm cav}} \simeq$ **Typical size of cavity :**

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

$$\simeq 1.2 \,\mathrm{m} \,\left(\frac{m_a}{\mu \mathrm{eV}}\right)^{-1}$$

Hitoshi Fest (17th Dec. 2024)

Finite mass region can be explored by gradually scanning small regions.

while keeping

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

Risshin Okabe (IPMU, U. Tokyo)

1. Put a superfluid ³He sample of the A1 phase in a cavity

- **2.** Apply a magnetic field to align the nuclear spins
- **3.** Axion excites "magnon" modes
- 4. Magnons mix with cavity photons
- **5.** Amplify and measure the signal of cavity photons

= Quantum limit

• Our experiment: $\hbar\omega \sim \mu eV$, T

But, quantum measurement techniques can circumvent quantum noise!

Risshin Okabe (IPMU, U. Tokyo)

Axion detection using a ferromagnetic phase of superfluid Helium-3

For $\hbar\omega/k_BT \gtrsim O(1)$, quantum fluctuation dominates thermal noises

$$\Gamma \sim \mathrm{mK} > N \simeq 1/2$$

Quantum measurement techniques

Quadratures

$$\hat{X} = \frac{\hat{a} + \hat{a}^{\dagger}}{\sqrt{2}}, \quad \hat{Y} = \frac{\hat{a} - \hat{a}^{\dagger}}{\sqrt{2}i} \quad \left(\hat{X}, \hat{Y}\right) = i \quad \left(\Delta \hat{X}\right)(\Delta \hat{Y}) \ge \frac{1}{4}$$

- Quantum fluctuation $\Delta \hat{X} \sim \Delta \hat{Y} \sim 1/2$ becomes dominant in low T

Imposing quantum fluctuation to \hat{Y} (squeezing) & observing only \hat{X} (homodyne measurement), can reduce quantum noise less than 1/2

Risshin Okabe (IPMU, U. Tokyo)

[Today's talk by Lindley Winslow]

• Usually, we measure #photons $\propto \hat{X}^2 + \hat{Y}^2$ by observing $\hat{X} \& \hat{Y}$ simultaneously

Axion detection using a ferromagnetic phase of superfluid Helium-3

Result: expected sentivity for DM axion

Risshin Okabe (IPMU, U. Tokyo)

- Total observation time: 2 years
- T_{int} : measuring time for one scanning
- G_{s} : squeezing parameter
- M: total amount of Helium-3
- Q : cavity quality factor

DM axion

Axion detection using a ferromagnetic phase of superfluid Helium-3

- Hitoshi is also knowledgeable about condensed matter physics.
- Axion-photon coupling has been well explored, but NOT for nucleon coupling.
- We have shown that axion-neutron coupling can be probed by using (nuclear) magnons in A1 phase of superfluid ³He.
 - sensitive to μeV axion, which is favored for DM axion
 - can explore heavier mass regions than other projected experiments
- We also quantitatively evaluated enhancement of sensitivity by quantum measurements.

Happy birthday!!

