Bridge for understanding from SQCD to QCD

Dan Kondo (IPMU) with Hitoshi Murayama and Bea Noether 12/17 Hitoshi Fest at IPMU

BCS-BEC cross over

BCS-BEC cross over

Table of contents

1.QCD lessons
2.SQCD and Anomaly mediated SUSY breaking (AMSB)
3.Chiral Lagrangian
4.Condensates
5.Mass spectrum

Table of contents

1.QCD lessons 2.SQCD and Anomaly mediated SUSY breaking (AMSB) 3.Chiral Lagrangian 4.Condensates 5.Mass spectrum

What are we made of ?

Also,

Also,

Let us look at QCD Lagrangian !

The chiral quark field… defined as eigenstates of $\gamma_5 \gamma_5 \psi_L(x) = -\psi_L(x)$, $\gamma_5 \psi_R(x) = \psi_R(x)$

$$L_{QCD} = \sum_{q} \left[\bar{\psi}_{L}^{(q)} i \, D_{\mu} \gamma^{\mu} \psi_{L}^{(q)} + \bar{\psi}_{R}^{(q)} i D_{\mu} \gamma^{\mu} \psi_{R}^{(q)} - m_{q} \left(\bar{\psi}_{L}^{(q)} \psi_{R}^{(q)} + \bar{\psi}_{R}^{(q)} \psi_{L}^{(q)} \right) \right] - \frac{1}{4} G_{\mu\nu}^{a} G^{\mu\nu a}$$

 $D_{\mu} = \partial_{\mu} - igA_{\mu}$: covariant derivative

Chiral transformation: $\psi_L \rightarrow e^{i\theta_L}\psi_L$, $\psi_R \rightarrow e^{i\theta_R}\psi_R$

Chiral transformation: $\psi_L \rightarrow e^{i\theta_L}\psi_L$, $\psi_R \rightarrow e^{i\theta_R}\psi_R$

In QCD, it is <u>believed</u> that even if $m_q \rightarrow 0$, hadrons are massive. The order parameter of chiral symmetry remains non-zero. $\langle 0 | \bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L | 0 \rangle \neq 0$

Qualitative picture

 $\Delta E \ge 2m_q - E_{bind}$

Ref: arxiv:1411.7853 (lecture of Yukinari Sumino)

Start: perturbative vacuum state $|0\rangle$ (no quarks no gluons)

QCD interaction generates quantum fluctuations. For short time Δt , uncertainty ΔE with $\Delta t \Delta E \sim 1$

 Δt

 $\Delta E > 0$ The smaller ΔE the longer the lifetime of $q\bar{q}g$ $\Delta E < 0$ The vacuum prefers to make bound state.

 $\Delta E < 0$ The vacuum prefers to make bound state.

 $\Delta E < 0$ The vacuum prefers to make bound state.

Ref: PDG QCD review

Table of contents

1.QCD lessons
2.SQCD and Anomaly mediated SUSY breaking (AMSB)
3.Chiral Lagrangian
4.Condensates
5.Mass spectrum

SUSY QCD (SQCD)

Super partners Scalar quark \tilde{q} Gluino λ

If they are decoupled, particle contents are identical.

$$SU(N_{c}) \text{ flavor } N_{f} \text{ SQCD Lagrangian}$$

$$Quark \text{ superfield} \quad Q = Q + \theta \psi_{Q} + \theta^{2}F, \quad \tilde{Q} = \tilde{Q} + \theta \tilde{\psi}_{\tilde{Q}} + \theta^{2}\tilde{F}$$

$$\psi_{Q} \text{ Left-handed quark} \quad i\sigma^{2}\tilde{\psi}_{\bar{Q}} \text{ Right-handed quark}$$

$$Gauge \text{ invariant and Supersymmetric}$$

$$L = tr \int d^{4}\theta \left(Q^{\dagger}e^{V}Q + \tilde{Q}e^{-V} \widetilde{Q^{\dagger}}\right) + \frac{1}{8\pi}Im \left[\tau \int d^{2}\theta W^{a\alpha}W^{a}_{\alpha}\right] + \int d^{2}\theta W(Q,\tilde{Q}) + h.c$$

$$Guge \text{ Super potential}$$

Weyl compensator…encapsulate AMSB process

$\Phi = 1 + \theta^2 m$...non dynamical spurion of scale invariance SUSY breaking m is encoded

$$L = \int d^4\theta \, \Phi^* \Phi K + \int d^2\theta \, \Phi^3 W + c.c$$

Effects Tree level
$$L_{tree} = -m\left(\phi_i \frac{\partial W}{\partial \phi_i} - 3W\right) + c.c$$

Induced mass $M_i^2 = \frac{\beta_i(g^2)}{2g_i^2} \underline{m}, \quad m_i^2 = -\frac{\dot{\gamma}_i}{4} \underline{m}^2, \qquad A_{ijk} = \frac{\gamma_i + \gamma_j + \gamma_k}{2} \underline{m}$ AMSB depends on energy scale of our interest only, UV insensitive.

Ref: Pomarol et.al JHEP05(1999)013, arxiv:9903448

$SU(N_c)$ SQCD

When $W = 0 \cdots$ only loop effects $\circ \bigcirc$

$$m_Q^2 = m_{\tilde{Q}}^2 = \frac{g^4}{(8\pi)^2} 2C_i (3N_c - N_f)m^2$$
$$m_\lambda^2 = \frac{g^2}{16\pi^2} (3N_c - N_f)m$$

• As long as the theory is asymptotically free $N_f < 3N_c$, the squarks and gauginos have positive mass. • (Integrating them out) the light particle contents are same as those of non-SUSY QCD!

 $L_{tree} = m \left(\phi_i \frac{\partial W}{\partial \phi_i} - 3W \right) + c.c$

Effects Tree level
$$L_{tree} = -m\left(\phi_i \frac{\partial W}{\partial \phi_i} - 3W\right) + c.c$$

Induced mass
$$M_i^2 = \frac{\beta_i(g^2)}{2g_i^2} \underline{m}, \quad m_i^2 = -\frac{\dot{\gamma_i}}{4} \underline{m}^2, \qquad A_{ijk} = \frac{\gamma_i + \gamma_j + \gamma_k}{2} \underline{m}$$

Naively $m \to \infty$, super partner decouples. Seemingly back to original QCD.

$$0 \leq N_{f} < N_{c} \text{ ADS case}$$

$$SQCD dynamics \cdots V = \frac{g^{2}}{8} (Q^{\dagger}t^{a}Q - \tilde{Q}t^{a}\tilde{Q})^{2} = 0$$

$$Q_{\alpha}^{f} (\alpha: \text{ color, } f: \text{ flavor}) \cdots QQ^{\dagger} \text{ can be diagonalized by unitary matrix}$$

$$t^{a}: \text{ generator } tr t^{a} = 0$$

$$M_{ij} = \delta_{ij}\phi^{2}$$

$$M_{ij} = \delta_{ij}\phi^{2}$$

$$M_{ij} = \tilde{Q}_{ij}Q_{j}$$

$$M_{ij} = \tilde{Q}_{ij}Q_{j}$$

R T

Refs: Affleck et.al

The potential is

-2.0

Table of contents

1.QCD lessons 2.SQCD and Anomaly mediated SUSY breaking (AMSB) 3.Chiral Lagrangian 4.Condensates 5.Mass spectrum

Let us see the fluctuation.

$$Q = \begin{pmatrix} v\xi^T \\ 0 \end{pmatrix}, \qquad \tilde{Q} = \begin{pmatrix} v\xi \\ 0 \end{pmatrix} \qquad \xi \to h(\xi, g_L, g_R)\xi g_L^T, \xi^T \to h^*(\xi, g_L, g_R)\xi g_R^T, U = \xi^2$$

Kinetic term: $\left|D_{\mu}Q\right|^{2} + \left|D_{\mu}\tilde{Q}\right|^{2} = \frac{v^{2}}{2} Tr\left[\partial_{\mu}U^{\dagger}\partial^{\mu}U\right] + \frac{1}{2}v^{2}Tr\left(2g\rho_{\mu} + i\left(-\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger}\right)\right)^{2}$

 $F_{\pi}^{2} \propto \Lambda_{\text{eff}}^{2}, \qquad (3.8)$ $F_{T}^{\alpha} \Lambda_{\text{eff}}^{3} \qquad (3.9)$

so that $m_{\pi}^2 \propto \Lambda_{\text{eff}} M_q$. Unfortunately, it is easy to check that Eqs. (3.8) and (3.9) do not have the same scaling behavior with m_{soft} in the formal decoupling limit as the weak-coupling results Eqs. (3.3) and (3.4), no matter which of Eqs. (3.5), (3.6), or (3.7) applies. Furthermore, the large N_c scaling of the large- m_{soft} chiral Lagrangian does not conform with expectations from ordinary QCD. Nonsupersymmetric chiral perturbation theory implies [18] that $F_{\pi}^2 \propto N_c$ and $F_T \propto N_c$, but the formal decoupling limit of the weakly-coupled SQCD chiral Lagrangian scales as $F_{\pi}^2 \propto N_c^0$ and $F_T \propto N_c^0$.

O(N⁰_c)… glueball contribution ? Martin & Wells Phys.RevD58 (1998)115013

Rescaling anomaly N.Arkani-Hamed & H. Murayama Phys.RevD57(1998)6638-6648

$$\frac{8\pi^2}{g_h^2} = \frac{8\pi^2}{g_c^2} + \frac{N_c}{8\pi^2} \log g_c^2$$

With t' Hooft coupling $N_c g_c^2 = g_t^2$ Scaling relation:

$$\Lambda^{3N_c - N_f} = \mu^{3N_c - N_f} e^{-8\pi^2/g_h^2} = \mu^{3N_c - N_f} e^{-8\pi^2/g_c^2} (g_c^2)^{-N_c} = \mu^{3N_c - N_f} N_c^{N_c} e^{-8\pi^2/g_t^2} (g_t^2)^{-N_c}$$

$$f_{\pi}^2 = 8 \left(\frac{N_c + N_f}{3N_c - N_f} \frac{\Lambda^{3N_c - N_f}}{m^{N_c - N_f}} \right)^{\frac{1}{N_c}} f_{\pi}^2 = O(N_c)$$

Not necessarily disconnected !

MesonKawarabayashi and Suzuki Phys.Rev.Lett 16(1966)255
Riazuddin and Fayazuddin Phys.Rev. 147 (1966)1071
Bando et al Phys.Rev.Lett .54(1985) 1215
Bando et al Nucl.Phys.B259 (1985) 493

Traditionally... ρ meson as dynamical gauge boson of Hidden Local symmetry (HLS) $G_{global} \times H_{local}$ with eg. $G_{global} = SU(2)_L \times SU(2)_R$, $H_{local} = SU(2)_V$ $L = L_A + aL_V$

 L_V is an auxiliary field and a is arbitrary parameter.

If L_{kin} is generated (quantum mechanically), $L_{HLS} = L_V + aL_A + L_{kin}$ successful phenomenological results can be derived (in particular with a = 2).

Universality of ρ meson coupling (ρ universality) $g_{\rho\pi\pi} = g_{\rho NN} = \cdots$ KSRF relation $m_{\rho}^2 = a g_{\rho\pi\pi}^2 f_{\pi}^2$ Vector meson dominance

Our case…

Kinetic term:
$$|D_{\mu}Q|^{2} + |D_{\mu}\tilde{Q}|^{2} = \frac{v^{2}}{2} Tr \left[\partial_{\mu}U^{\dagger}\partial^{\mu}U\right] + \frac{v^{2}}{2} Tr \left(2g\rho_{\mu} + i\left(-\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger}\right)\right)^{2}$$

 $\longrightarrow a = 1$

Wess-Zumino-Witten (WZW) term **Effective action** $W = -i \log \left| \int dQ \ d\tilde{Q} \ dV \exp \left| i \int d^4x \ L \right| \right|$ **Transformation**: $Q \rightarrow \xi^* Q$, $\tilde{Q} \rightarrow \xi^{\dagger} \tilde{Q}$ → $DQD\tilde{Q} \rightarrow DQI(\xi^T)D\tilde{Q}I(\xi)$ Jacobians arise $J(\xi^T) = \exp\left[-iN_c\int Tr\left(\xi d\xi^{\dagger}\right)^5\right]$ $J(\xi) = \exp\left[iN_c\int Tr\left(\xi^{\dagger}d\xi\right)^5\right]$ $W' = W - i \log I(\xi) - i \log I(\xi^T)$ $\longrightarrow N_c \int Tr \left[\left(\xi^{\dagger} d\xi \right)^5 - \left(\xi d\xi^{\dagger} \right)^5 \right] = N_c \int Tr \left[\left(\xi^{\dagger} d\xi - \xi d\xi^{\dagger} \right)^5 \right] = N_c \int Tr \left[\left(U^{\dagger} dU \right)^5 \right]$ (up to local counter term) N_c comes from N_f block of fermions and $N_c - N_f$ block of fermions Ref: D' Hoker & Farhi, NuclB248(1984)77-89

Table of contents

1.QCD lessons 2.SQCD and Anomaly mediated SUSY breaking (AMSB) 3.Chiral Lagrangian 4.Condensates 5.Mass spectrum

For $m \gg \Lambda$ expectation from QCD

How to calculate for $m \ll \Lambda$ (ASQCD) ?

Quark/Squark condensate

As a chiral superfield $\langle M \rangle = \langle \tilde{q} \tilde{q}^* \rangle + \theta^2 \langle q \bar{q} \rangle$

Potential minimum F-component by equation of motion

$$\langle q \, \overline{q} \rangle = \langle F_M \rangle = - \left\{ \frac{\partial W}{\partial M} \right\}$$

How to calculate for $m \ll \Lambda$ (ASQCD) ?

Gluon/Gluino condensate

Generating functional

$$\log Z \supset \frac{1}{16\pi i} \int d^2\theta \,\tau WW$$

Promote to spurion, which sources $\langle GG \rangle$, **F**-component sources $\langle \lambda \lambda \rangle$

$$\langle GG \rangle = 16\pi i \frac{\partial}{\partial \tau} \log Z = 16\pi i \left\langle \frac{\partial V}{\partial \tau} \right\rangle$$

 $\langle \lambda \lambda \rangle = 16\pi i \frac{\partial}{\partial F_{\tau}} \log Z = 16\pi i \left\langle \frac{\partial W}{\partial \tau} \right\rangle$

$$\langle GG \rangle = 16\pi i \frac{\partial}{\partial \tau} \log Z = 16\pi i \left(\frac{\partial V}{\partial \tau} \right)$$
$$\langle \lambda\lambda \rangle = 16\pi i \frac{\partial}{\partial F_{\tau}} \log Z = 16\pi i \left(\frac{\partial W}{\partial \tau} \right)$$

Remember the dynamical scale

$$\Lambda = \mu \exp\left[\frac{2\pi i}{3N_c - N_f}\tau\right] \longrightarrow \frac{\partial}{\partial \tau} = \frac{2\pi i}{3N_c - N_f}\Lambda\frac{\partial}{\partial \Lambda}$$
$$\langle GG \rangle = -\frac{32\pi^2}{3N_c - N_f}\Lambda\left\langle\frac{\partial V}{\partial \tau}\right\rangle$$
$$\langle \lambda\lambda \rangle = -\frac{32\pi^2}{3N_c - N_f}\Lambda\left\langle\frac{\partial W}{\partial \tau}\right\rangle$$

ADS
$$0 \le N_f < N_c$$

Quark condensate

$$\langle \tilde{q}^* \tilde{q} \rangle = 4N_f \Lambda^2 \left(\frac{3N_c - N_f}{N_c + N_f} \frac{m}{\Lambda} \right)^{\frac{N_f}{N_c}}$$

. .

$$\langle \bar{q}q \rangle = 4N_f \Lambda^3 \left(\frac{3N_c - N_f}{N_c + N_f} \frac{m}{\Lambda} \right)^{\frac{N_f}{N_c}}$$

ADS
$$0 \le N_f < N_c$$

Gluon condensate

$$\langle GG \rangle = 128\pi^2 N_f \Lambda^4 \left(\frac{3N_c - N_f}{N_c + N_f} \frac{m}{\Lambda} \right)^{\frac{N_f}{N_c}}$$

$$\langle \lambda \lambda \rangle = 32\pi^2 N_f \Lambda^3 \left(\frac{3N_c - N_f}{N_c + N_f} \frac{m}{\Lambda} \right)^{\frac{N_f}{N_c}}$$

Table of contents

1.QCD lessons 2.SQCD and Anomaly mediated SUSY breaking (AMSB) 3.Chiral Lagrangian 4.Condensates 5.Mass spectrum

Example

ADS
$$N_f = 3, N_c = 4$$

Kondo et.al JHEP09(2022)041, arxiv:2205.08088

Conclusion

From x SB ASQCD vaccum,

We derived the chiral Lagrangian and WZW term.

We studied the condensation of quarks and gluons.

We studied the mass spectrum.

ASQCD can be a bridge toward understanding QCD.