QED 5-loop

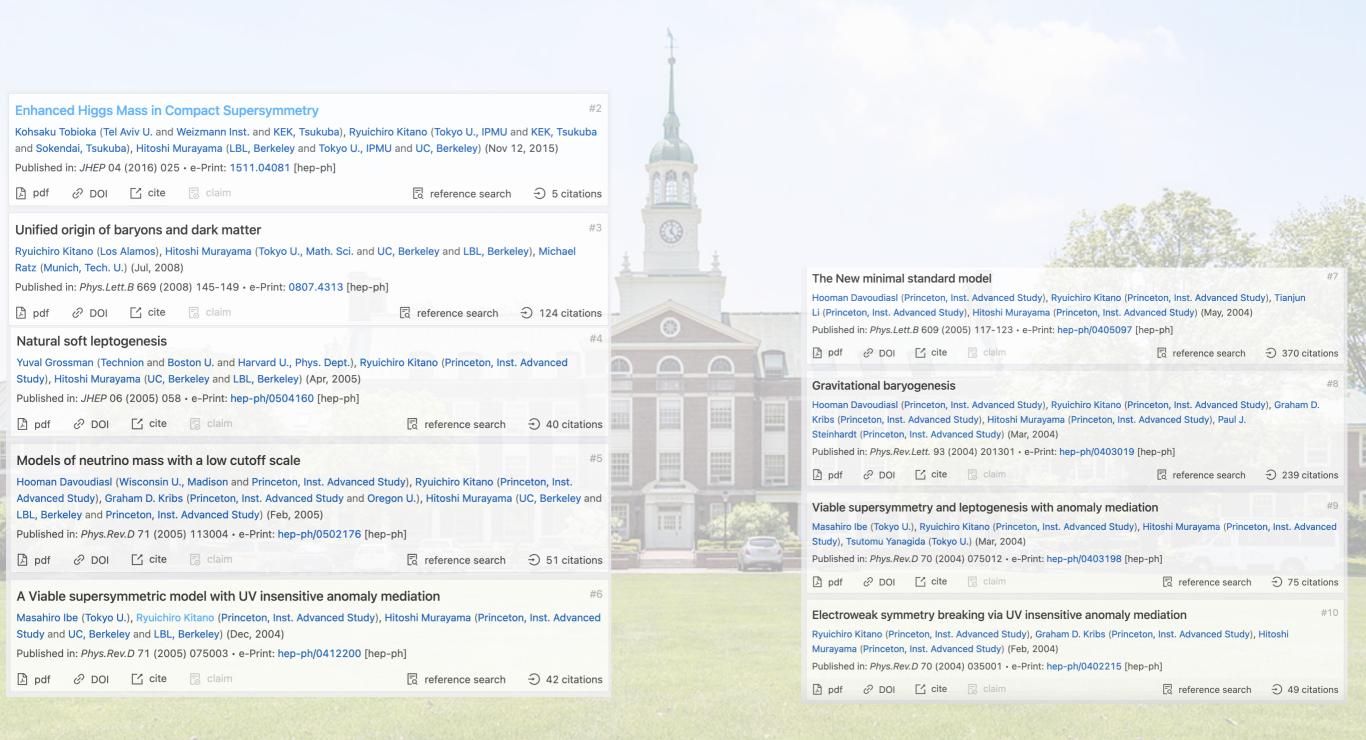
Ryuichiro Kitano (KEK)

Reference:

Kitano, 2411.11554 [hep-lat]

Happy birthday, Hitoshi!

I am one of thousands of physicists who are pretty much influenced by his physics works. I was so lucky that I was at IAS when Hitoshi stayed there for a year.



I'm proud of many papers which we've written together at IAS!

I was like a kid when we were collaborating. I was always excited to talk to Hitoshi who has been the world leader of theoretical physics.

now the director of the Universe

Today, I would like to be back to a kid and try to let Hitoshi say "good job!"

Atoms 2019, 7, 28 10 of 27

OK, QED 5-loop

The two groups have independently calculated the 5-loop coefficient of lepton g-2.

```
electron g-2: agreed! a_e(\text{theory}:\alpha(\text{Rb})) = \frac{1159652182.037(720)(11)(12) \times 10^{-12}}{159652181.606(229)(11)(12) \times 10^{-12}}, a_e(\text{theory}:\alpha(\text{Cs})) = \frac{1159652180.73(28) \times 10^{-12}}{159652180.73(28) \times 10^{-12}}. [Harvard '08]
```

Wonderful achievement of theoretical physics!!

A little bit of discrepancy?

$$A_1^{(10)} = 6.737 (159)$$
 $A_1^{(10)}[Volkov] = 5.891(61)$

[Aoyama, Hayakawa, Kinoshita, Nio '19]

[Volkov '24]

seems to be resolved recently. [Muon g-2 Theory Initiative@KEK]

by the way,

Speaking of g-2...

```
electron g-2: agreed! a_e(\text{theory}:\alpha(\text{Rb})) = 1\,159\,652\,182.037\,(720)(11)(12)\times 10^{-12}, \\ a_e(\text{theory}:\alpha(\text{Cs})) = 1\,159\,652\,181.606\,(229)(11)(12)\times 10^{-12}, \\ a_e(\text{expt.}) = 1\,159\,652\,180.73\,(28)\times 10^{-12}. \text{ [Harvard '08]}
```

This is great. It seems that we understood particle physics very deeply.

But, here is a question. What's the size of the (quantum) gravity correction to it?

```
standard answer : O(m_e^2/M_{Pl}^2) \sim 10^{-43} very small. possible answer (Cohen, Kaplan, Nelson) : O((m_e/M_{Pl})^{1/2}) \sim 10^{-11} This could be within the future reach!
```

The latter estimate is based on a very deep Volume vs. Area discussion.

I think this is really important!

. . .

Today, I'll talk about nothing deep, just QED.

I try to develop a numerical method to
evaluate the perturbative coefficients in QED

on the lattice.

Path integral

throw dice many times and take an average.

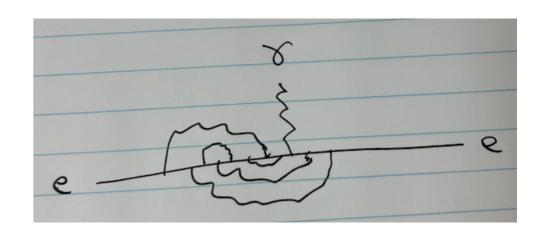
For example, two point functions of electrons:

$$\langle \psi(x)\overline{\psi}(0)\rangle = \int [dA] \det D D_{(x,0)}^{-1} e^{-S[A]}$$

Lattice people do this everyday. No Feynman diagram needed.

Simple!

Even simpler

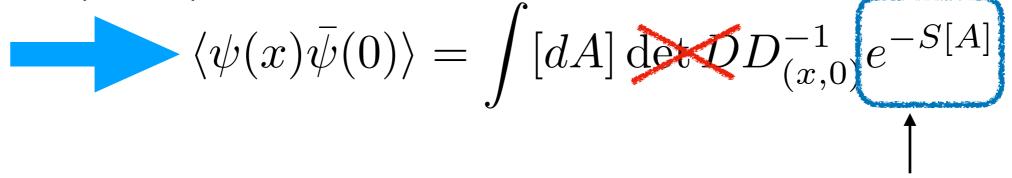


The most difficult and the most important part of the contributions are from diagrams with no lepton loops.

That's actually the easiest part for lattice.

$$\langle \psi(x)\bar{\psi}(0)\rangle = \int [dA] \det DD_{(x,0)}^{-1} e^{-S[A]}$$

Ignore lepton loops



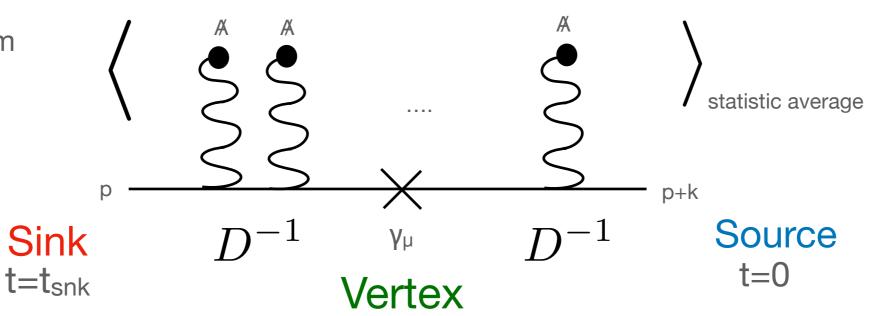
In QED, this part is **free** theory! throwing the dice part is trivially done! (Gaussian noise)

Perturbative calculations on the lattice

[Di Renzo, Scorzato '00]

generated gauge field configurations

only one diagram to calculate:



diagonal in the position space.

$$\eta(t_{
m snk}) \stackrel{
m FFT}{\underset{
m x\leftarrow p}{\vdash}} \underbrace{\frac{1}{i p + m}} \stackrel{
m FFT}{\stackrel{
m ieA}{\vdash}} \stackrel{
m ieA}{\stackrel{
m FFT}{\vdash}} \eta(0)$$
 diagonal in the momentum space

Sequence of multiplying diagonal matrices and FFT.

Very effectively done on computers.

We simply store the values at **each order** in the perturbation. Averaging process adds up all the diagrams at each order **automatically**.

Renormalization?

This is the three-point function I can calculate perturbatively. This is a divergent quantity.

$$G_{\mu}(t) = \left\langle \sum_{\mathbf{p}'} D^{-1}(t_{\text{sink}}, t; \mathbf{p}, \mathbf{p}') \gamma_{\mu} D^{-1}(t, t_{\text{src}}; \mathbf{p}' + \mathbf{k}, \mathbf{p} + \mathbf{k}) \right\rangle$$

But anyway, by separating t_{sink}, t, t_{src}, this quantity is dominated by the contributions from on-shell fermion states.

 $G_E(t) = \operatorname{tr}\left[\frac{1+\gamma_4}{2}G_4(t)\right], \quad G_M(t) = i\sum_{i,j,k}\epsilon_{ijk}\operatorname{tr}\left[\frac{1+\gamma_4}{2}\gamma_5\gamma_iG_j(t)\right]\mathbf{k}_k,$ Electric and Magnetic projections:

 $G_{\mu}^{\text{norm}}(t) = \sum_{\mathbf{r}'} \left\langle D^{-1}(t_{\text{sink}}, t; \mathbf{p}, \mathbf{p}') \right\rangle \gamma_{\mu} \left\langle D^{-1}(t, t_{\text{src}}; \mathbf{p}' + \mathbf{k}, \mathbf{p} + \mathbf{k}) \right\rangle$ Repeat the same calculations for

and normalize
$$F_E(t) = \frac{G_E(t)}{G_E^{\mathrm{norm}}(t)}, \quad F_M(t) = \frac{G_M(t)}{G_M^{\mathrm{norm}}(t)},$$

now external legs are taken away. We get form factors.

Finally, we get the g-factor
$$\dfrac{g(t)}{2}=\dfrac{F_M(t)}{F_E(t)},$$
 perturbatively.

All the divergence is gone, because this is a physical quantity!

Done!

Of course, the life is not so easy.

Limit, limit, limit...

We need to take the limits of

IR cutoff

e the limits of $(\mathbf{k}/2)$ $m_{\gamma} \to 0$

infinite volume $L \to \infty$ (in the lattice unit, a=1)

 $1/L \ll m_{\gamma} \ll m$

while keeping

 (\mathbf{k},t)

 $(-\mathbf{k}/2, t_{\mathrm{sink}})$

The strategy is to keep $m_{\gamma}L \gg 1$, and take the double limit, $m_{\gamma}/m \rightarrow 0$ and $m \rightarrow 0$.

We need a large volume!!

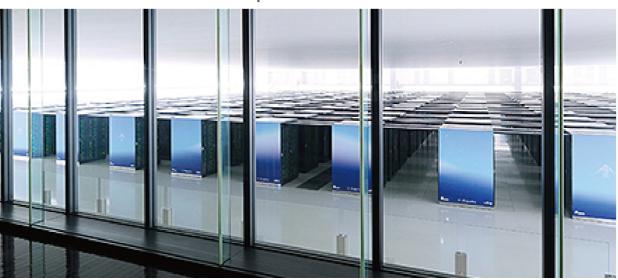
For example, if we want $m_{\gamma}L \sim 4$, $m_{\gamma}/m \sim 0.1$, and $m^2 \sim 0.1$, we need $L \sim 100!$

We need a supercomputer.

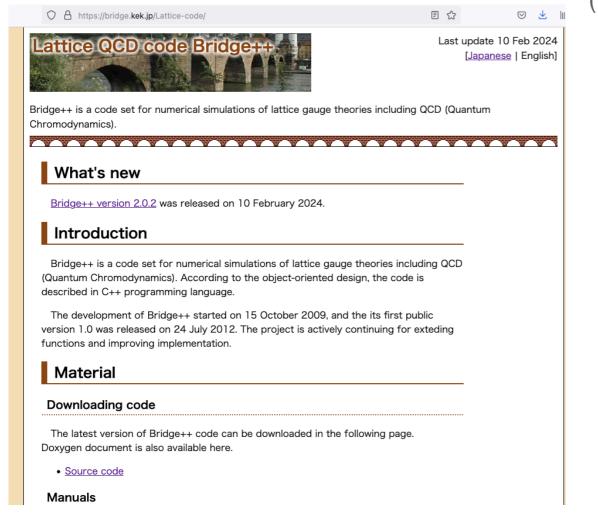
Supercomputer and code:

We had a good one in the next building. (-2024)

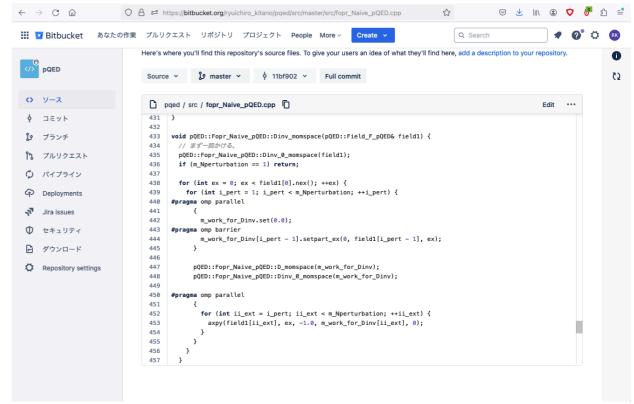
FUGAKU is also open for researchers.



Matsufuru-san in the next building has been developing a user friendly open lattice codes: (Thanks, Matsufuru san!)

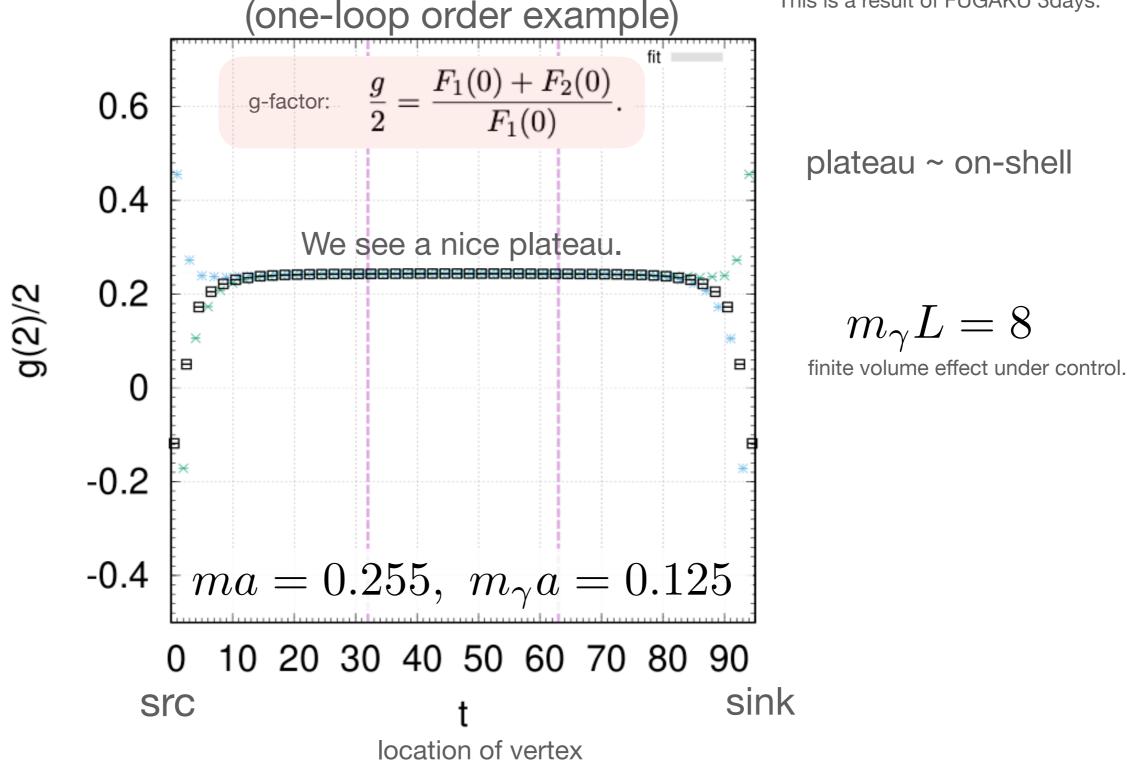


It is a good summer homework!



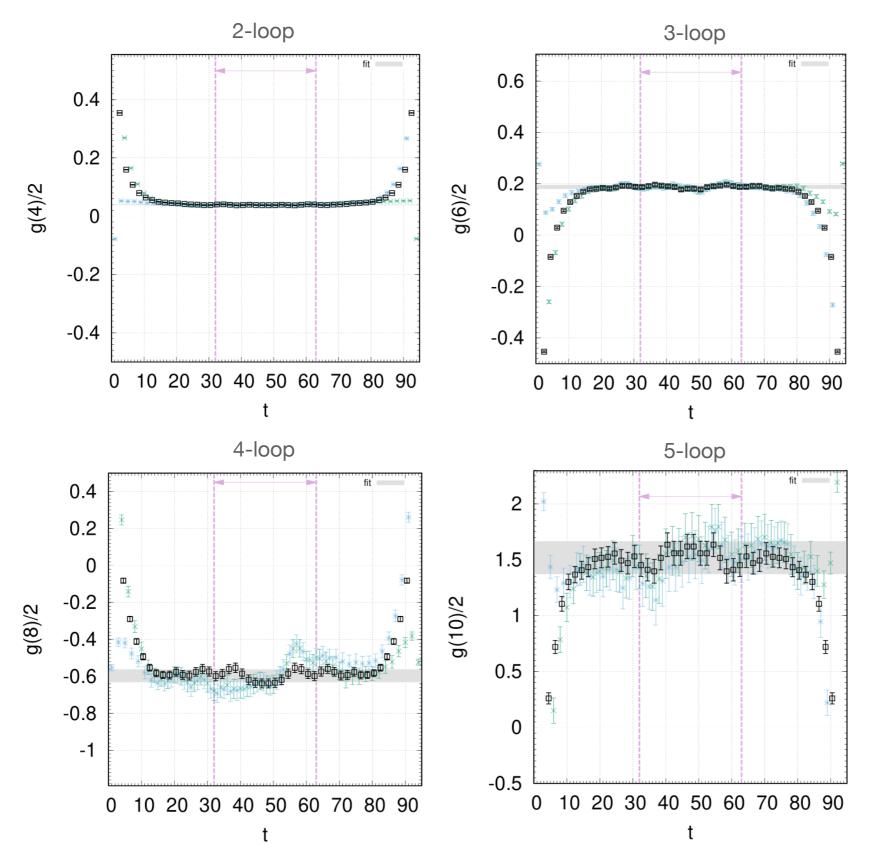
643x128 lattice results:

O(200,000) configurations. This is a result of FUGAKU 3days.



I'm actually using a trick to make T-direction larger by averaging periodic and anti-periodic boundary conditions. No worry about backward propagation.

64³x128 lattice results:



O(200,000) configurations.

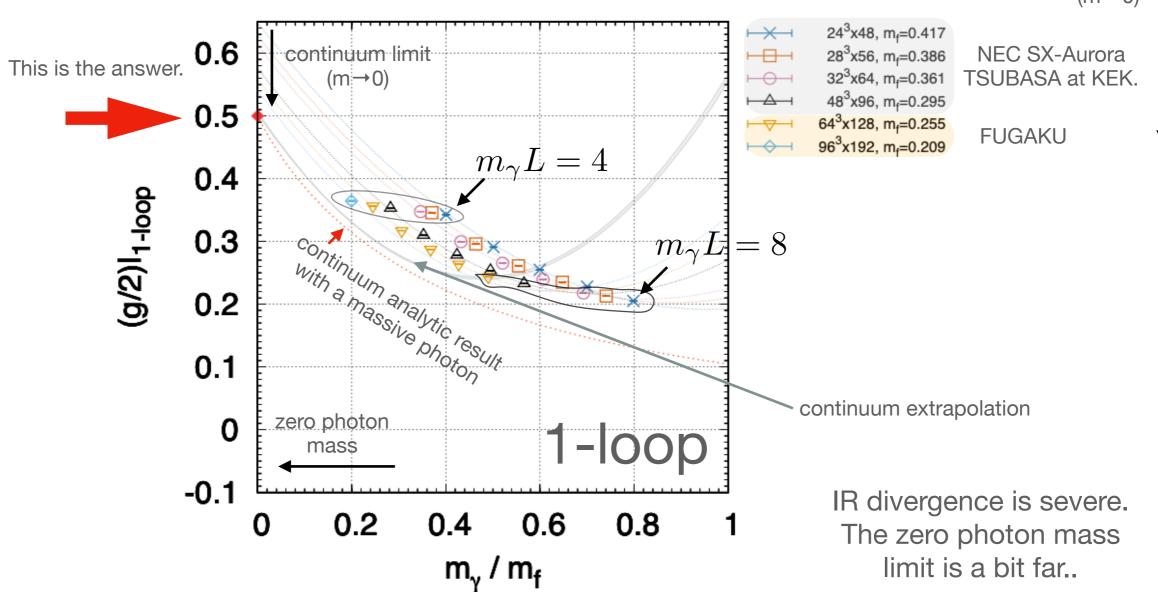
This is a result of FUGAKU 3days.

 $ma=0.255, \ m_{\gamma}a=0.125$ But the photon mass is still big.

Fitting:

$$\begin{split} A^{(2n)}(m,m_{\gamma}) = & a_0^{(2n)} \left(1 + b_0^{(2n)}(ma)^2 \right) \\ &+ a_1^{(2n)} \frac{m_{\gamma}}{m} \left(1 + b_1^{(2n)}(ma) \right) + a_2^{(2n)} \left(\frac{m_{\gamma}}{m} \right)^2 \left(1 + b_2^{(2n)}(ma) \right) \end{split}$$

continuum limit (m→0)

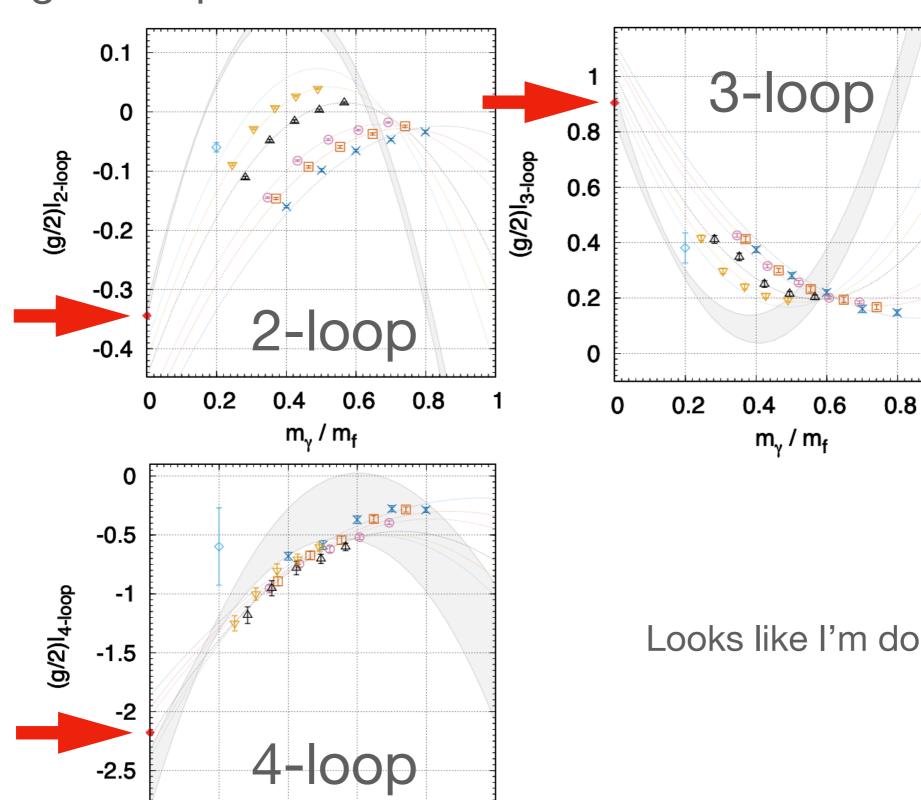


Looks like we could reproduce α/π .

systematic error (including fitting, finite volume etc.) is a percent level. (hopefully)

higher loops:

fitting with quadratic functions.



8.0

0.2

0

0.4

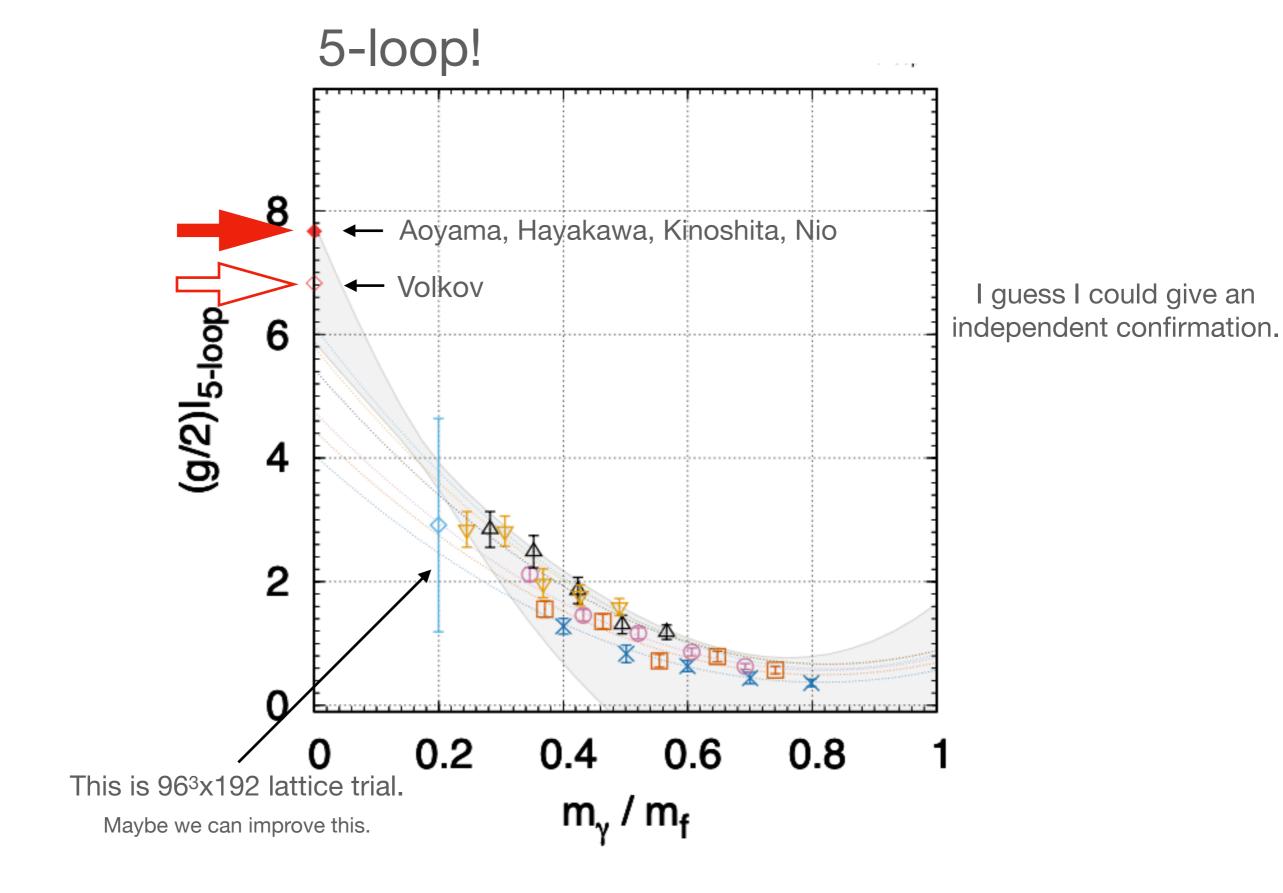
 m_{γ} / m_{f}

0.6

Looks like I'm doing all right.

5-loop results:

fitting with quadratic functions.



My estimate:

$$A^{(10)}$$
(no lepton loop) = 7.0 ± 0.9

to be compared with

$$7.668 \pm 0.159$$
 (AHKN)

$$6.828 \pm 0.060$$
 (Volkov)

I guess this would be a totally independent check of the 5-loop coefficient.

Summary

I tried.

I couldn't quite reach the precision of the Feynman diagram method, but at least this gives a totally independent calculation/confirmation.