Quest of 5 questions by CMB (from space)

T. Matsumura, Kavli IPMU

KAVLI IPMU MATHEMATICS OF THE UNIVERSE

- What is the universe made of?
- How did it begin?
- What is its fate?
- What are the laws that govern it?
- Why do we exist in it?
- Am I doing a good job?

Very brief history of the CMB measurements

The discovery of CMB by Penzias and Wilson in 1964.

The Cosmic Microwave Background Radiation (Nobel Lecture) by Robert Wilson 8 Dec 1978.

Very brief history of CMB measurements (w/ space focus)

The discovery of CMB by Penzias and Wilson in 1964.

⁸⁰

60

41

20

δT

Temperature fluctuation

Pre-WMAP CMB

temperature power

spectrum

CMB to probe before the big bang

Big bang nuclear synthesis CMB 380,000 year old

Then, what's the initial condition?

Well understood by the CMB data with the current physics framework.

Very brief history of CMB measurements (w/ space focus)

Very very brief history of the new CMB space mission

- Around 2009, ESA Planck was successfully launched and started its observations, and the efforts toward the next generation CMB space mission have emerged.
- In 2009, a few **CMB-pol** concept studies came out for Astro2010.
- In 2019, the probe mission concept, **PICO**, was proposed.
- Post-Planck mission concepts from the European community were proposed, e.g. SAMPAN, B-Pol, COrE, COrE+, and PRISM.
- The concept of **LiteBIRD** was first put together in 2008.
 - In 2019, JAXA ISAS selected LiteBIRD as the 2nd strategic L-class mission.
 - But there were nearly 10 years of preparations, and Hitoshi supported LiteBIRD a lot, e.g., by proposing LiteBIRD to the Science Council of Japan master plan and MEXT Roadmap from IPMU. Thank you!

LiteBIRD Joint Study Group

Over 400 researchers from Japan, North America and Europe

Team experience in CMB experiments, X-ray satellites and other large projects (ALMA, HEP experiments, ...)

2024-12-19

LiteBIRD overview

- Lite (Light) spacecraft for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket.
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B*-modes
- Final combined sensitivity: 2.2 µK·arcmin

LiteBIRD collaboration

第2段液体水素タンク Second Stage

ガスジェット装置 Gas Jet System 第2時液体酸素タ

第2段エンジン

Second Stage Engine LE-5B-3

PTEP 2023

LiteBIRD overview

LiteBIRD reformation phase

- After the ISAS/JAXA mission definition review, LiteBIRD is under rescope studies to consolidate the mission's feasibility with the same scientific objectives.
- The LiteBIRD collaboration will spend approximately one year (~ late 2025) on the studies of the reformation plan.

第2段液体水素タンク Second Stage LH2 Tank

ガスジェット装置 Gas Jet System 第2段液体酸素タン Second Stage

第2段エンジン LE-5B-3 Second Stage Engine LE-5B-3

LiteBIRD collaboration

PTEP 2023

2024-12-19

The challenge of B-modes detection

- The *B*-mode signal is expected to have an amplitude at least 3 orders of magnitude below the CMB temperature anisotropies
- LiteBIRD is targeting a sensitivity level in polarization ~30 times better than Planck
- This extremely good statistical uncertainty must go in parallel with exquisite control of:
 - 1. Instrument systematic uncertainties
 - 2. Galactic foreground contamination
 - 3. **"Lensing B-mode signal"** induced by gravitational lensing
 - 4. Observer biases

Image credit: Josquin Errard

LiteBIRD main scientific objectives

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out well-motivated inflationary models
 - Insight into the quantum nature of gravity
- The inflationary (i.e. primordial) *B*-mode power is proportional to the tensor-to-scalar ratio, *r*
- Current best constraint: r < 0.032 (95% C.L.)
 (IIII) Tristram et al. 2022, combining BK18 and Planck PR4)
- LiteBIRD will improve current sensitivity on r by a factor ~50
- L1-requirements (no external data):
 - For r = 0, total uncertainty of $\delta r < 0.001$
 - For r = 0.01, 5- σ detection of the reionization (2 < ℓ < 10) and recombination (11 < ℓ < 200) peaks independently
- L2-requirements:
 - σ_{stat} $< 6 \times 10^{\text{-4}}$ and σ_{sys} $< 6 \times 10^{\text{-4}}$
 - Additional security margin of $\sigma_{margin} < 6 \times 10^{-4}$

2024-12-19

LiteBIRD constraints on inflation

- Huge discovery impact (evidence for inflation, knowledge of its energy scale, and distance traveled by the inflaton...)
- A detection of B modes by LiteBIRD with *r* > 0.01 would imply an excursion of the inflation field that exceeds the Planck mass
 - Such a detection would **constrain theories of quantum gravity** such as superstring theories
- An upper limit from LiteBIRD would disfavour the simplest inflationary models, with $M > M_p$
 - This includes the monomial models, α-attractors with a super-Planckian characteristic scale, including the Starobinsky model and models that invoke the Higgs field as the inflaton

2024-12-19

LiteBIRD other science outcomes

- The mission specifications are driven by the required sensitivity on r
- Meeting those sensitivity requirements would allow to address other important scientific topics, such as:
 - 1. Characterize the *B*-mode power spectrum and search for source fields (e.g. scale-invariance, non-Gaussianity, parity violation, ...)
 - 2. Power spectrum features in polarization
 - Large-scale *E*-modes
 - **Reionization** (improve $\sigma(\tau)$ by a factor of 3)
 - **Neutrino mass** ($\sigma(\sum m_{\nu}) = 12 \text{ meV}$)
 - 3. Constraints on cosmic birefringence
 - 4. SZ effect (thermal, diffuse, relativistic corrections)
 - 5. Constraints on primordial magnetic fields
 - 6. Elucidating anomalies
 - 7. Galactic science
 - Characterizing the foreground SED
 - Large-scale Galactic magnetic field
 - Models of dust polarization

Hitoshifest

2024-12-19

Thank you!?

Optical depth, reionization and neutrino masses

Hitoshifest

- LiteBIRD will provide a cosmic-variance limited measurement of the *E*-mode power spectrum at large scales ($2 < \ell < 200$)
- This will lead to improved constraints on:
 - <u>Reionization</u>
 - Cosmic-variance measurement of the **optical depth** to reionization $\Rightarrow \sigma(\tau) \approx 0.002 \Rightarrow \times 3$ improvement with respect to

Planck (III Planck Int.Res. LVII, 2020)

- Improved constraints on reionization history models: 35% improvement on the uncertainty of $\Delta(z_{reion})$
- <u>Neutrino masses</u>
 - ×2 improvement on $\sigma(\sum m_v)$
 - $\sigma(\sum m_v) = 12 \text{ meV} \Rightarrow 5\sigma$ detection for a minimum value of $\sum m_v = 60 \text{ meV}$ (allowed by flavour-oscillation experiments) or larger
 - Potentially allow to distinguish between the inverted neutrino mass ordering and the normal ordering

adapted fron Calabrese+201'

2024-12-19

Constraints on cosmic birefringence

- **Cosmic birefringence** could be seeded by parity-violating processes in Universe
- Could occur if dark matter or dark energy are a pseudo-scalar field coupled to electromagnetism that changes sign under inversion of spatial coordinates
- Induces non-zero *TB* and *EB* and also a *B*-mode signal
- Constraints from the CMB must account jointly for i) a possible detector angle miscalibration (I Minami et al., 2019) and ii) a positive EB signal from Galactic foregrounds (I Diego-Palazuelos et al., 2022)
- Recent measurements show a tentative detection of a birefringence angle of β = (0.34±0.09)° (III Eskilt & Komatsu 2022, from a combination of WMAP and Planck PR4)
- LiteBIRD has the potential to:
 - Reduce the error bar on a global β leading to a ~10-sigma detection
 - Produce a map of β to test for **cosmic-birefringence anisotropy**

Hitoshifest

LiteBIRD collaboration PTEP 2023

Mapping the hot gas in the Universe

- The **Sunyaev-Zel'dovich** effect provides a mean to map the distribution of hot electrons in the Universe
- Improved sensitivity and frequency coverage of LiteBIRD crucially contributes to improve these studies
- Combination with Planck adds the benefit of angular resolution
- LiteBIRD will **improve** ×10 the noise in the SZ map wrt Planck
- This will allow to:
 - Produce a high-fidelity SZ map over the full-sky essentially free of contamination at l < 200
 - Test theories of structure formation via **hot-gas tomography** from SZ × galaxy surveys correlations
 - Search form **WHIM** in filaments connecting clusters
 - Study an **inhomogeneous reionization** process via crosscorrelations of SZ × CMB optical depth
 - Measure the mean gas T_e via the relativistic SZ
 - Improve constraints on $S_8 = \sigma_8 (\Omega_m/0.3)^{0.5}$ by 15%

Anisotropic CMB spectral distortions

- LiteBIRD will be sensitive to any spatially-varying CMB spectral distortion, beyond the SZ effect
 - **Rayleigh scattering**. LiteBIRD will have sensitivity to measure at 25-sigma (III Beringue et al. 2021) the frequencydependent CMB anisotropies due to Rayleigh scattering by HI at the LSS
 - → Such a detection would allow to derive improved constraints on N_{eff} and $\sum m_v$
 - <u> μ distortion</u>. LiteBIRD can detect an anisotropic μ distortion induced by non-Gaussian fluctuations induced during inflation
 - This would offer a power test of inflation at its onset
 - Axion decay. LiteBIRD can look for polarized spectral distortions produced by resonant conversion of axions into photons by the Galactic magnetic field

forecast for SPT-3G+, CCAT-prime, SO and CMB-S4 10^{1}

2024-12-19

Constraints on primordial magnetic fields

- Primordial magnetic fields (PMFs) affect the CMB via different effects:
 - **Gravitational effects** with magnetically-induced perturbations
 - Impact on the **ionization history** of the Universe due to their post-recombination dissipation
 - Induce a Faraday rotation of the CMB polarization
 - **Non-Gaussianity** induced in the CMB polarization anisotropies
- LiteBIRD:
 - Is a **sensitive probe** to PMFs through all these effects, thanks mainly to its remarkable sensitivity in polarization
 - Will **break the nG threshold** improving current upper limits by a factor of ~ 3
 - Will be able to **univocally identify the PFMs contribution to CMB** by joining all these effects together
 - Will allow a detection of **nG fields** with high significance

Upper limits on PMF amplitude for $n_{\rm B} = -2.9$	
Gravitational effect	$B_{1\mathrm{Mpc}} < 0.8 \mathrm{~nG}$
Ionization history	$\sqrt{\langle B^2 \rangle} < 0.7 \text{ nG}$
Faraday rotation	$B_{1 \mathrm{Mpc}} < 3.2 \mathrm{nG}$
Non-Gaussianities	$B_{1Mpc} \approx 1 \text{ nG}$

Elucidating spatial anomalies with polarization

- Various so-called anomalies have been found in WMAP and Planck temperature data that exert a mild tension against the Λ CDM cosmological model:
 - a lack of power on large angular scales
 - the alignment of the quadrupole and octopole moments
 - a hemispherical asymmetry in power on the sky
 - a lack of correlation at large angular scales
 - parity asymmetry in the power associated with even/odd mode
 - an anomalous "Cold Spot" on a scale of $\sim 10^\circ$
 - anomalously low temperature variance
- Given their modest statistical significance, these could simply be statistical flukes
- However, they may also be hints of **new physics** beyond the standard model
- Polarized CMB anisotropies provide independent information on the fluctuations that source the temperature anisotropy
- LiteBIRD E-mode polarization sky maps will allow further tests on the nature of these spatial anomalies at close to the cosmic-variance level of sensitivity

Credit ESA/Planck Collaboration

2024-12-19

Hitoshifest

125°00'00"

 120°

 130°

- LiteBIRD will provide 15 high-sensitivity polarization full-sky maps from 40 to 402 GHz
- Sensitivity improved by a factor of 5 at 40 GHz and 10 at 402, with respect to Planck

 40°

- Gain in spectral resolution
- Wealth of Galactic science possible:
 - Geometry of the Galactic magnetic field
 - Interstellar turbulence
 - Dust composition
 - Grain alignment
 - Cold clumps
 - Geometry of synchrotron-bright loops
 - SED of the synchrotron emission
 - Nature of AME and spectral variations...
 - ... and many others!

Galactic astrophysics

Polarized intensity [M.Iv sr⁻¹]

Summary

- LiteBIRD is the selected JAXA/ISAS strategic L-class mission with international partners.
- The team is currently undergoing the reformation design phase, and we plan to conclude this by late summer.
- LiteBIRD may be known as the tensor-to-scalar ratio. It is true, but it is also essential to stress that broad science outcomes exist.
- We didn't cover this in this talk, but even broader scientific outcomes exist by combining the data from the CMB ground telescopes, e.g. Simons Observatory, SPO, and CMB-S4.

Very brief history of CMB measurements (w/ space focus)

Very brief history of CMB measurements (w/ space focus)

Thank you!