Black Holes as a Window into Quantum Gravity

Yasunori Nomuraa

UC Berkeley; LBNL; RIKEN iTHEMS; Kavli IPMU

ithem.s

My career with Hitoshi

~25 years, 6 papers

Compact Supersymmetry		#1
Hitoshi Murayama (UC, Berkeley and LBL, Berkeley and Tokyo U., IPMU), Yasunori Nomura (UC, Berkeley and LBL, Berk Berkeley), Kohsaku Tobioka (Unlisted, JP and Tokyo U., IPMU and Tokyo U.) (Jun, 2012) Published in: <i>Phys.RevD</i> 86 (2012) 115014 • e-Print: 1206.4993 [hep-ph]	eley), Satoshi Shirai (UC, E	Berkeley and LBL,
▶ pdf	🛛 reference search	€ 46 citations
More visible effects of the hidden sector Hitoshi Murayama (UC, Berkeley and LBL, Berkeley), Yasunori Nomura (UC, Berkeley and LBL, Berkeley), David Poland Published in: <i>Phys.RevD</i> 77 (2008) 015005 • e-Print: 0709.0775 [hep-ph]	(UC, Berkeley and LBL, Ber	#2 keley) (Sep, 2007)
🕼 pdf 🕜 DOI 🔀 cite 🔀 claim	🖫 reference search	€ 112 citations
Simple Scheme for Gauge Mediation Hitoshi Murayama (LBL, Berkeley and UC, Berkeley), Yasunori Nomura (LBL, Berkeley and UC, Berkeley) (Jan, 2007) Published in: <i>Phys.RevD</i> 75 (2007) 095011 • e-Print: hep-ph/0701231 [hep-ph]		#3
🕼 pdf 🕜 DOI 🔀 cite 🔀 claim	🛛 reference search	⊖ 86 citations
Gauge Mediation Simplified Hitoshi Murayama (IBL, Berkeley and UC, Berkeley), Yasunori Nomura (IBL, Berkeley and UC, Berkeley) (Dec, 2006) Published in: <i>Phys.RexLett.</i> 98 (2007) 151803 • e-Print: hep-ph/0612186 [hep-ph]		#4
🖹 pdf 🕜 DOI 🔀 cite 🔀 claim	🛛 reference search	
Wilson lines and symmetry breaking on orbifolds Lawrence J. Hall (UC, Berkeley and LBL, Berkeley), Hitoshi Murayama (UC, Berkeley and LBL, Berkeley), Yasunori Nomu 2001) Published in: <i>NucLPhys</i> .8 645 (2002) 85-104 • e-Print: hep-th/0107245 [hep-th]	ra (UC, Berkeley and LBL, E	#5 Berkeley) (Jul,
🗈 pdf 🕜 DOI 🔀 cite 🔀 claim	🛛 reference search	⊕ 134 citations
Viable ultraviolet insensitive supersymmetry breaking Nima Arkani-Hamed (UC, Berkeley and LBL, Berkeley), David E. Kaplan (Chicago U., EFI and Argonne), Hitoshi Muraya Berkeley) (Dec, 2000) Published in: JHEP 02 (2001) 041 • e-Print: hep-ph/0012103 [hep-ph]	ma (UC, Berkeley), Yasunor	#6 ri Nomura (UC,
🕼 pdf 🖉 DOI 🔀 cite 🔀 claim	🐻 reference search	107 citations

Two pillars of modern physics

Quantum mechanics

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \mathcal{H} |\Psi\rangle$$

General relativity $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G_N}{c^4}T_{\mu\nu}$

photos: Nobel Foundation archive

not get along well

 \rightarrow A "patchwork" is enough.

Interesting things occur in "unusual" situations

cf. $v \ge v_{usual}$ in Newtonian mechanics

At ~ ℓ_{P} , theoretical control of quantum field theory (point particles in continuous spacetime) is lost.

 \rightarrow string theory

There is a problem that the current formulation of string theory cannot (directly) address. (today's theme)

Unusual situations can occur at long distances: Black Holes

The interior cannot be seen from the outside.

- "No hair" theorem

Black Hole Thermodynamics

A puzzle

Another pillar of modern physics Statistical mechanics

 $S = k_{\rm B} \ln W$

(below, $k_{\rm B} = 1$)

photo: Univ. Frankfurt

What happens if matter falls into a black hole?

for any system

for all practical purposes

 $\Delta S \ge 0$

... $\Delta S < 0 !?$

A peculiar property of BHs in general relativity

A proposal [Bekenstein, 1973]

photo: APS

The entropy of a BH is proportional to its horizon area.

$$S_{\rm BH} = \frac{A}{4G_{\rm N}}$$

Note: $G_N = \ell_P^2 \sim (10^{-33} \text{ cm})^2 \rightarrow \text{huge entropy}$ e.g. A solar mass BH has $S \sim 10^{78}$ while the sun has $\sim 10^{60}$.

Indeed,
$$\Delta\left(\frac{A}{4G_{N}} + S_{matter}\right) \ge 0$$

Does this make sense?

$$\frac{A}{4G_{\rm N}} = 4\pi G_{\rm N} M^2 \xrightarrow{OS}_{M} = \frac{1}{T} \rightarrow \text{finite temperature}$$

Doesn't a BH only absorb stuff?

photo: NASA

photo: NASA

photo: NASA

photo: NASA

photo: NASA

photo: NASA

photo: NASA

photo: NASA

photo: NASA

1 sec

photo: NASA

photo: NASA

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Hawking temperature} = \frac{1}{8\pi MG_{\rm N}}$.

4 sec

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Hawking temperature} = \frac{1}{8\pi MG_{\rm N}}$.

5 sec

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Hawking temperature}$

photo: NASA

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Hawking temperature}$

photo: NASA

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Hawking temperature}$

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Awking temperature} = \frac{1}{8\pi M G_{\rm N}}$.

BHs are thermodynamic objects.

 \rightarrow Spacetime is composed of microscopic d.o.f.s!

photo: NASA

The horizon is "smooth." Quantum mechanical effect There must be radiation corresponding to $T_{\rm H}^{\rm Hawking temperature}$.

BHs are thermodynamic objects.

 \rightarrow Spacetime is composed of microscopic d.o.f.s!

Holography

A clue comes from the BH physics itself

A BH is the highest entropy state of the region,

and still $S \propto \frac{A}{\ell_P^2}$

Strange!

The concept that spacetime exits down to $\sim l_P$ is an illusion!

→ suggests that there is a formulation of quantum gravity in spacetime **one less dimension** than the naïve one.

Sounds crazy?

AdS/CFT correspondence [Maldacena, 1997]

BH evolution **must be** unitary.

A process in non-gravitational (unitary) theory

The horizon behaves as the surface of regular material. ... no issue with unitarity

 \rightarrow What about the interior?

The horizon behaves as the surface of regular material. ... no issue with unitarity

 \rightarrow What about the interior?

Alternatively

Hawking's analysis

information loss

 \rightarrow What was wrong with Hawking's analysis?

Recent Progress I — replica wormholes —

Start with "global spacetime"

Start with "global spacetime"

Hugely redundant!

Start with "global spacetime"

Hugely redundant!

 $\langle \Psi_1 | \Psi_2 \rangle = 0 \longrightarrow$

semiclassical (QFT in curved spacetime) $\langle \Psi_1 | \Psi_2 \rangle \sim e^{-\frac{S}{2}}$

quantum gravity

... only e^{S} independent states

$$\begin{split} |\Psi\rangle &= \sum_{i=1}^{e^{S}} c_{i} |\psi_{i}\rangle \quad c_{i} \sim e^{-\frac{S}{2}} \\ \langle \Psi_{1} |\Psi_{2}\rangle &= \sum_{i=1}^{e^{S}} c_{1,i}^{*} \, c_{2,i} \sim e^{\frac{S}{2}} e^{-S} \sim e^{-\frac{S}{2}} \\ \to e^{e^{S}} \text{ approximately orthogonal states} \end{split}$$

Unitarity of Hawking evaporation

~ the # of EPR particles in R whose partners are in \overline{R}

Unitarity of Hawking evaporation

~ the # of EPR particles in R whose partners are in \overline{R}

 \rightarrow How to get this curve?

Penington ('19); Almheiri, Engelhardt, Marolf, Maxfield ('19); … Penington, Shenker, Stanford, Yang ('19); Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini ('19)

Penington ('19); Almheiri, Engelhardt, Marolf, Maxfield ('19); ... Penington, Shenker, Stanford, Yang ('19); Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini ('19)

Penington ('19); Almheiri, Engelhardt, Marolf, Maxfield ('19); ... Penington, Shenker, Stanford, Yang ('19); Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini ('19)

replica wormhole (nonperturbative effect)

Penington ('19); Almheiri, Engelhardt, Marolf, Maxfield ('19); ... Penington, Shenker, Stanford, Yang ('19); Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini ('19)

replica wormhole (nonperturbative effect)

→ Hawking radiation emitted earlier is **not** independent of the interior d.o.f.s!

...; Maldacena, Susskind ('13); ...

- consistent because of causality
- → Hawking radiation emitted earlier is **not** independent of the interior d.o.f.s! ...; Maldacena, Susskind ('13); ...

Recent Progress II — unitary gauge construction —

Start with a "distant" (holographic) description

The d.o.f.s outside the horizon comprise the **entire** system.

 \rightarrow The evolution is unitary.

→ How does the "interior" emerge?

Papadodimas, Raju ('12-'15); Verlinde, Verlinde ('12-'13); Y.N., Sanches, Varela, Weinberg ('12-'15); ... Y.N. ('19, 20)

Start with a "distant" (holographic) description

The d.o.f.s outside the horizon comprise the **entire** system.

 \rightarrow The evolution is unitary.

 \rightarrow How does the "interior" emerge?

Papadodimas, Raju ('12-'15); Verlinde, Verlinde ('12-'13); Y.N., Sanches, Varela, Weinberg ('12-'15); ... Y.N. ('19, 20)

Key features Y.N. (19, 20)

- defining characteristics of BHs

(I) Exponentially dense spectrum

(II) Dynamics at the stretched horizon

 \rightarrow "ultimate" thermalization

... universal across all low energy species

Emergence of the interior

Emergence of the interior

... universally thermal

Emergence of the interior

At late times, the BH is entangled with radiation

... Interior d.o.f.s involve early Hawking radiation!

Effective theory of the interior

Structure of Quantum Gravity

Redundancies of the description

• General covariance (perturbative)

Nonperturbative redundancies

... allows for making (only) one of the two pillars manifest, but the theory still accommodates both of them (QM + GR).

Black hole conundrum Structure of quantum gravity

⊃ Quantm mechanics & General relativity, but in a subtle manner!

"From the Black Hole Conundrum to the Structure of Quantum Gravity" Y.N., *Mod. Phys. Lett.* A36 (2021) 2130007 [arXiv:2011.08707 [hep-th]]

"Complementarity for a Dynamical Black Hole"

B. Concepcion, Y.N., K. Ritchie, S. Weiss, arXiv:2405.15849 [hep-th]

Real Summary

Happy Birthday, Hitoshi!

