Workshop on the Physics and the Mathematics of the Universe @ IPMU

Can we prove inflation?

Sachiko Kuroyanagi IFT UAM-CSIC / Nagoya University 14 July 2025

Inflation

Early accelerated expansion of the Universe

No direct evidence, but supported by many observational facts.

How can we prove inflation?

prove

verb (used with object)

proved, proved, proven, proving.

1 to establish the truth or genuineness of, as by evidence or argument.

to prove one's claim.

Synonyms: <u>verify</u>, <u>substantiate</u>, <u>confirm</u>, <u>demonstrate</u>

Antonyms: disprove

- 2 Law. to establish the authenticity or validity of (a will); probate.
- 3 to give demonstration of by action.
- 4 to subject to a test, experiment, comparison, analysis, or the like, to determine quality, amount, acceptability, characteristics, etc..

to prove ore.

- 5 to show (oneself) to have the character or ability expected of one, especially through one's actions.
- 6 *Mathematics*. to verify the correctness or validity of by mathematical demonstration or arithmetical proof.

How can we preve inflation? Predictions of Inflation Theory confirm/test

1. Accelerated expansion of the Universe

$$\ddot{a} > 0$$

a(t): scale factor of the Universe

 $t\,$: cosmic time

2. Nearly scale-invariant SCALAR perturbations

$$\mathcal{P}_{\mathrm{S,prim}}(k) \sim \mathrm{const.}$$

k : wavenumber

3. Nearly scale-invariant TENSOR perturbations

$$\mathcal{P}_{\mathrm{T,prim}}(k) \sim \mathrm{const.}$$

How can we preve inflation? Predictions of Inflation Theory confirm/test

1. Accelerated expansion of the Universe

Special Thanks to Yashar Akrami (IFT)

Only a direct measurement of the accelerated expansion could serve as proof of cosmic inflation!

2. Nearly scale-invariant SCALAR perturbations

- Cosmic microwave background (CMB)
- Galaxy survey

3. Nearly scale-invariant TENSOR perturbations

- CMB B-mode polarization
- Direct detection of gravitational waves (GWs)

 \rightarrow This talk

Basics of cosmology

Einstein equation

Geometry

= Gravity

Matter

Equation for an expanding Universe

Einstein equation

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} < \begin{cases} T_{\mu\nu} = \begin{pmatrix} -\rho & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \end{cases}$$

 ρ : density p: pressure

Friedmann-Lemaître-Robertson-Walker (FLRW) metric)

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

a(t) : scale factor K : curvature <10-2 from observation

Friedmann equation: $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{K}{a^2}$

Hubble expansion rate

Friedmann equation:
$$H^2=\frac{8\pi G}{3}\rho-\frac{K}{a^2}$$

$$H \equiv \frac{\dot{a}}{a}$$
: Hubble parameter

radiation $\propto a^{-4}$ matter $\propto a^{-3}$

$$\rho = \rho_r + \rho_m + \cdots$$

→ sum of energy densities

radiation $\rho_r \propto a^{-4}$ matter $\rho_m \propto a^{-3}$

scale factor: a

Motivation to consider inflation

Horizon / Flatness / Monopole problems

Inflation explains why...

the Universe is homogeneous the Universe is flat we do not observe magnetic monopole

Figure from Baumman, "TASI Lectures on Primordial Cosmology", arXiv:1807.03098

Horizon problem

Figure from Baumman, "TASI Lectures on Primordial Cosmology", arXiv:1807.03098

What drives inflation?

Most popular scenario

Inflation is driven by a scalar field slowly rolling down in its potential

Why use a scalar field?

→ Because it easily produces an isotropic universe.

Energy density of a scalar field

$$\rho_{\phi} = \dot{\phi}^2/2 + V$$

Equation of Motion

$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$

Friedmann equation

$$H^2 = \frac{8\pi}{3m_{\rm Pl}^2} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right)$$

slow-roll approximation

$$\frac{\dot{\phi}^2/2 \ll V}{\longrightarrow} H = \text{const.} \propto V$$

$$\rightarrow a \propto \exp(Ht)$$

Exponential expansion

Why do we want to confirm inflation?

because it's about the origin of the universe and could be linked to physics beyond standard models

What causes the accelerated expansion? Einstein equation

modification of gravity

new (scalar) particle

→ new hint for the fundamental law of the universe

Predictions of inflation theory

Slow-roll parametrization

Since the scalar field rolls slowly, its position does not change much during inflation.

slow-roll parameters << 1

$$\epsilon \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \qquad \eta \equiv M_{\rm Pl}^2 \frac{V''}{V} \qquad \xi_V^2 \equiv M_{\rm Pl}^4 \frac{V'V'''}{V^2}$$

 \rightarrow A quantity that characterizes the potential V around $\varphi = \varphi_{CMB}$ (' denotes a derivative with respect to φ)

Creation of scalar perturbations

Inflaton scalar field has quantum fluctuations

 \rightarrow Average ϕ_0 , Fluctuation $\delta \phi$

δt

same

density

End of inflation is deviated by $\delta t = \frac{\delta \phi}{\dot{\phi}}$

фо

 $\phi_0+\delta\phi$

inflation ends when

$$\epsilon = 1$$

longer expansion: lower density

density fluctuations

shorter expansion: higher density

radiation/matter phase

Creation of tensor perturbations

Space-time itself exhibits quantum fluctuations

Predictions of inflation theory

Scalar power spectrum
$$\mathcal{P}_{S,\text{prim}}(k) = \frac{1}{\pi \epsilon} \left(\frac{H}{m_{\text{Pl}}}\right)^2 \bigg|_{k=aH}$$

→ observed as density perturbations

$$n_S(k) - 1 \equiv \frac{d \ln \mathcal{P}_{S,\text{prim}}(k)}{d \ln k} \simeq -6\epsilon + 2\eta$$

$$\alpha_S(k) \equiv \frac{dn_S(k)}{d\ln k} \simeq -16\epsilon \eta + 24\epsilon^2 + 2\xi^2$$

Tensor power spectrum

$$\mathcal{P}_{T,\text{prim}}(k) = \frac{16}{\pi} \left(\frac{H}{m_{\text{Pl}}}\right)^2 \bigg|_{k=aH}$$

→ observed as gravitational waves

Tensor-to-scalar ratio
$$r \equiv \frac{\mathcal{P}_{T, \text{prim}}(k)}{\mathcal{P}_{S, \text{prim}}(k)} \simeq 16\epsilon$$

$$n_T(k) \equiv \frac{d \ln \mathcal{P}_{T,\text{prim}}(k)}{d \ln k} \simeq -2\epsilon$$

Predictions of inflation theory

Scalar power spectrum
$$\mathcal{P}_{S,\text{prim}}(k) = \frac{1}{\pi \epsilon} \left(\frac{H}{m_{\text{Pl}}}\right)^2 \Big|_{k=aH}$$

→ observed as density perturbations

$$n_S(k) - 1 \equiv \frac{d \ln \mathcal{P}_{S,\text{prim}}(k)}{d \ln k} \simeq -6\epsilon + 2\eta$$

$$\alpha_S(k) \equiv \frac{dn_S(k)}{d\ln k} \simeq -16\epsilon \eta + 24\epsilon^2 + 2\xi^2$$
supressed

Observational support so far

2. Nearly scale-invariant SCALAR perturbations

strongly supported by the the CMB observations

ACT Collaboration, arXiv:2503.14452, arXiv:2503.14454

Small deviation from the scale invariant spectrum (n_s=1)

Observational support so far

2. Nearly scale-invariant SCALAR perturbations

strongly supported by the the CMB observations

ACT Collaboration, arXiv:2503.14452, arXiv:2503.14454

Scalar running is consistent with zero

Reconstruction of the power spectrum

Future observations

3. Nearly scale-invariant TENSOR perturbations

CMB B-mode polarization is a unique probe for inflation!

LiteBIRD

Simons Observatory

But... Is this enough?

No, because not only inflation theory predicts B-mode polarization!

Cosmic strings

Kawasaki et al., PRD 82, 103504 (2010)

Magnetic fields

Khalife & Pitrou, arXiv:2410.03612

SU(2) gauge fields

LiteBIRD Collaboration, PTEP 042F01 (2023)

Phase transitions

Greene et al., arXiv:2410.23348

Any further tests?

→ Consistency relation!

 $r = -8n_T$

Predictions of inflation theory

Scalar power spectrum

$$\mathcal{P}_{S,\text{prim}}(k) = \frac{1}{\pi \epsilon} \left(\frac{H}{m_{\text{Pl}}} \right)^2 \bigg|_{k=aH}$$

→ observed as density perturbations

$$n_S(k) - 1 \equiv \frac{d \ln \mathcal{P}_{S,\text{prim}}(k)}{d \ln k} \simeq -6\epsilon + 2\eta$$

$$\alpha_S(k) \equiv \frac{dn_S(k)}{d\ln k} \simeq -16\epsilon \eta + 24\epsilon^2 + 2\xi^2$$

Tensor power spectrum

$$\mathcal{P}_{T,\text{prim}}(k) = \frac{16}{\pi} \left(\frac{H}{m_{\text{Pl}}}\right)^2 \bigg|_{k=aH}$$

→ observed as gravitational waves

Tensor-to-scalar ratio
$$r \equiv \frac{\mathcal{P}_{T,\mathrm{prim}}(k)}{\mathcal{P}_{S,\mathrm{prim}}(k)} \simeq 16\epsilon$$
 $r = -8n_T$

$$r = -8n_T$$

$$n_T(k) \equiv \frac{d \ln \mathcal{P}_{T,\text{prim}}(k)}{d \ln k} \simeq -2\epsilon$$

Direct detection of GWs

Measuring GWs at two different scales!

Primordial GWs

Importance of measuring at two scales

Importance of measuring at two scales

Difficulty I

Amplitude is typically very small

Dependence on inflation models

Dependence on inflation models

Difficulty 2

High frequency modes may be suppressed by reheating

Seto & Yokoyama, JPSJ 72 (2003) 3082-3086 DECIGO's target frequency Nakayama et al., JCAP 06, 020 (2008), PRD 77, 124001 (2008) 0.1Hz -11 -12 **TRH~107GeV** spectral amplitude -13 -14 f_{bend} ∝ reheating temperatureT_{RH} -15 -16 **T**RH -17 high low -18 -19 -15 -10 -5 5 frequency = $k/2\pi$

Early history of the Universe

Early history of the Universe

Early history of the Universe

Effect of the early matter phase

We need T_{RH} > 10⁷GeV to have the signal at the DECIGO frequency!

Difficulty 3

Ambiguity in predicting the amplitude due to the effective degrees of freedom

Effective number of degrees of freedom

0

-12

Damping due to the changes in effective number of degrees of freedom g_{*}

density
$$ho(T)=rac{\pi^2}{30}g_*(T)T^4,$$
 entropy $s(T)=rac{2\pi^2}{45}g_{*s}(T)T^3$

 $g_*(T) & \Pi_{ij} = 0$ $g_*(T) & \Pi_{ij} = 0$

-10

As T decreases, each particles become non-relativistic when T~m.

primordial spectrum with tilt

 $log(f_0[Hz])$

 $g_* = const. \& \Pi_{ii} = 0$

For SM particles, $g_s=g_s=106.75$ If we have non-SM particles, $g_s, g_s>106.75$

→ More damping in the GW amplitude

Three challenges to measure n_T

Summary

Several observations can be used to test inflation

- 1. Accelerated expansion of the Universe
- Required to solve the horizon / flatness / monopole problems

- 2. Nearly scale-invariant SCALAR perturbations
- · Almost confirmed by CMB & large scale observations!

- 3. Nearly scale-invariant TENSOR perturbations
- Key observations to confirm inflation
- Testing the consistency relation through CMB B-modes and direct gravitational wave detection would offer further, stronger evidence

Summary

Two Japanese experiments are the key to confirm inflation

3. Nearly scale-invariant TENSOR perturbations

- Key observations to confirm inflation
- Testing the consistency relation through CMB B-modes and direct gravitational wave detection would offer further, stronger evidence

Possible discussion

Further observational tests?

- 1. Accelerated expansion of the Universe
- Any way to measure the expansion directly???

- 2. Nearly scale-invariant SCALAR perturbations
- Gaussianity (Non-Gaussianity) of perturbations
- Quantum nature of perturbations
- 3. Nearly scale-invariant TENSOR perturbations
- Gaussianity (Non-Gaussianity) of perturbations
- Quantum nature of perturbations

Possible discussion

Non-linearity appears when we add extra ingredients

- Gauge field during inflation
- Formation of primordial black holes

→ developing a precise analytic formalism is still an active area of research

How is it likely to have large r?

(added after a comment from Yanagida-san)

Spectral tilt
$$n_S(k) - 1 \equiv \frac{d \ln \Delta_{\zeta, \text{prim}}^2(k)}{d \ln k} \simeq -6\epsilon + 2\eta$$
 $\epsilon_V \equiv \frac{M_{\text{Pl}}^2}{2} \left(\frac{V'}{V}\right)^2$
Tensor-to-scalar ratio $r \equiv \frac{\mathcal{P}_{T, \text{prim}}(k)}{\mathcal{P}_{S, \text{prim}}(k)} \simeq 16\epsilon$ $\eta_V \equiv M_{\text{Pl}}^2 \frac{V''}{V}$

A small ε (small r) indicates a large negative η , which leads $\varepsilon << |\eta|$

My personal optimistic view

The idea of 'naturalness' can vary from person to person, but if we assume that it is natural to have $\varepsilon \sim |\eta|$, then we would not expect ε to be extremely small.

→ Hope for observable tensor mode!