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Topological Data Analysis TDA
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Why topology?



1. Suppressing information.
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A topological and a geometric map



2. Higher dimensional information.

Torus and Borromean rings



3. Computable signatures.

LEONHARD EULER 1707-1783

Euler characteristic:

X = fivertices — fledges + fifaces



Homology

(Persistent homology)



Combinatorial spaces K

/A &

Simplicial complex: K is a combinatorial representation of a
topological space built from

Ko = vertices

K, = edges

K> = triangles

K3 = tetrahedra etc.



Homology of K

Chain complex (over a field F)
Aoy d, dy
cee IF[I(n-l—l] _+> IEF[I{n] — IF[[(n—l] e IET[I<1] — IF[I{O]

Key-observation:
The boundary of a boundary is empty: d,od,+1 =0

n-th Homology group: H,(K) := Ker(d,)/Im(d,+1)
n-th Betti number:

Bn = dimH,(K) =dimKer(d,) — dimIm(d,+1)
X(K)=0p0o—B1+62—...

fo=1, 1 =2, f2=1, x=0



Functoriality: L C K a subcomplex

induced map on chain complexes:

F[Ly] — F[K,]

induced map on homology:

H,(L) — Hy(K)



Henri Poincaré 1854—1912



Emmy Noether 1882—1935



From data to topological spaces



Topology of the «-cloud

Cech-complex and Vietoris-Rips complex:

vertices
edges between point of distance < ¢



Nerve T heorem

For any point cloud in RY, its e-cloud has the same homology as
its e-Cech-complex C..

Also note:
o CCcCReCCre C ...



Persistent homology

c—.6 a:—lr].l e— 1.6 a:—:E.l
dimension 1
dimension 0
Source: Otter et al.



META THEOREMS

Existence of Barcodes [Carlsson-Zomorodian 2005]:
One can always find barcodes representing persistent homology
(in a unique way upto permutation).

Stability Theorem [Cohen-Steiner-Edelsbrunner-Harer 2007]:
Small changes of input data result in small changes of output
statistics.



Persistence diagrams and landscapes
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e Equivalent information
e Advantages: (1) averages; (2) standard norms
e Properties: Law of Large Numbers, Central Limit Theorem



Computing PH

Survey

Otter, Porter, Tillmann, Grindrod, Harrington,
A Roadmap for the computation of persistent homology,
EPJ Data Science (2017),

Statistics

Fasy, Kim, Lecci, Maria, Rouvreau
TDA: Statistical Tools for Topological Data Analysis,
Introduction to the R package TDA (2019)

New improved software — inspired by Morse theory

Bauer: Ripser (2019)

Identification of cycles

Henselman: Eirene



Applications of PH



1. Application: Knotted proteins

@

Knot core

B

SR\ T
Knot depth: D(Knot) = HIar)rtial)

Protein-databank: PDB (aminoacid-chains: 3KZK, 4JQO, ..)
Knotted proteins: KnotProt (over 1000; structural stability (7))
Trefoil knots : most
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Right: knotted 3KZK overlaid with un-knotted 4JQO
Left: landscape averages: X\» in yellow
Right: extra cycle for 3KZK: contains critical crossing

Benjamin-Mukta-Moryoussef-Uren-Harrington-Tillmann-Barbensi,
J R Soc Interface 2023



2. Application: Blood vessels in tumors

Blood
Tumour vessel network
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Tortuosity (Hp) and cycles (H1) Stolz et al. IMA 2019
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3. Application: In physics

An Introduction to Topological Data
Analysis for Physicists: From LGM to
FRBs

Jeff Murugan & Duncan Robertson

Laboratory for Quantum Gravity € Strings
Department of Mathematics and Applied Mathematics
University of Cape Town

April 26, 2019
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Topological data analysis for the string landscape

Alex Cole and Gary Shiu

Department of Physics, Uniwversity of Wisconsin,
Madison, WI 53706, U.S.A.

E-mail: acole4@wisc.edu, shiu@physics.wisc.edu

ABSTRACT: Persistent homology computes the multiscale topology of a data set by using a
sequence of discrete complexes. In this paper, we propose that persistent homology may be
a useful tool for studying the structure of the landscape of string vacua. As a scaled-down



Procedure to Reveal the Mechanism of Pattern
Formation Process by Topological Data Analysis
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Hiraoka group at Kyoto University

Okinawa Institute of Science and Technology (24.06-08.08.2025)
TSVP Symposium: Representation Theory and TDA



Multiparameter PH and Noise



2 Rings Point Cloud
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Multiparameter persistent homology:
MPH : (R", <) Ly Complex LN Vectp

Multiparameter persistence modules = functors of categories:
Vi (R", <) — Vectp
e Interleaving distance well-defined (NP-hard for n > 1)

e Stability holds
e NO analogue of barcodes (Gabriel's theorem)

Carilsson-Zomorodian, Lesnick-Wright, Miller, Harrington-Otter-
Schenck-Tillmann, ...



Fix a multiparameter module V : (R*, <) — Vecty

Rank invariant:
rank(s,s+1t) :=dim Im(V(s) - V(s+1t))

Multiparameter persistence landscape:
AN XR" = R>q defined by

AMEk,z) =sup{e > 0:rank(z —el,z +€l) > k}

e Stability

e Strong Law of Large Numbers

e Central Limit Theorem

~ approximate normal distributions and confidence intervals



Radius
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Applications of MPH
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4. Application: immune cells in tumours
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FoxP3

Head-Neck Tumor: T-cells (CD8, FoxP3), macrophages (CD68)
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Tumour Hypoxia and Immune Cell Spatial Patterning

A

B CD8 Locations

Radius-Codensity Bifiltration
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Multi-parameter persistence: density/radius ~ hypoxia/radius
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Theory



Quiver representations



Q = (Qo, Q1) — a quiver with vertices Qo and arrows Q1

Example: A; ordinary and zig-zag

X € i () €y ) &y i
Xy X Xpog = X¢.

Example: multiparameter grid

X, ¢4 * X1,¢5 o * Xiy,04

Xo,1 *X1,1 B P X0

X0,0 * X1,0 P * X0



Cq associated category

Definition:

A quiver representation is a functor V : Cg — Vectp
V: f.d. vector space for z € Qo

V. linear map for e € Q1

Example: Identity representation on subquiver Q' C @

F ifze@
0O otherwise

idp ifec Q’l
0] otherwise

(1)

Q] = { and IQ'e = {

Example: Subrepresentation generated at x

< V. > smallest subrepresentation of V containing V,



If @ is finite,
there is a unique decomposition into indecomposables:

V> @IelndQ dy (I1).1

Gabriel’s Theorem:
Indg is finite if and only if the underlying graph of @ is a finite
union of simply laced Dynkin diagrams (type A, D, E).

Ordinary and zigzag PH are well behaved.
MPH is not!

—==—= > search for good invariants for MPH



Harder-Narasimhan filtration



C abelian category

stability condition:
Z : K(C) — {z € C|Re(z) > 0} group homomorphisms

slope:

uz(V) = ]ng((g)) for V.40

V is Z-semi-stable if uz (V') < uz(V) for all V! C V
V is Z-stable if uy(V') < uz(V) for al V! C V



Theorem:
Harder-Narasimhan filtration of V along 7

If C is both Noetherian and Artinian, then every non-zero V € C
admits a unique filtration Ve:

o=Vcvlc...cv"=V
with semi-stable quotients S* = V*/V*~1 such that

pz(SY) > pz(S?) > - > pz(S™)

C = Rep(Q) satisfies hypothesis for finite Q



dim : K(Rep(Q)) — Z%

(This is an isomorphisms for acyclic quivers)

If Z factors through dim then Z is determined by
a, B Qo — R:

Z(V) = Xpe0,(B(x) +ia(x)).dimV,

may assume B(x) = 1 for all z € Qq;

so Z determined by central charge «;

slope simplifies to

> peg,a(x)dimV,

pa(V) =

Definition: HN-type
HNI[V;a] := (dimS*?,dimS?,...,dimS")




a is complete if
HN[V;al = HN[W;a] < VW

Proposition:

If « is complete then every indecomposable representation in Rep(Q)
IS a-stable

Example: Euler
€. Qo — R with e(x) = 1 — g(in-arrows)

Example: skyscraper
dy : Qo — R with 6,(x) = day



Quivers of type A



Ordinary persistence: Ay © g — -+ — Tp_1
Euler e = 6,

Theorem:

Let V be a persistence module and let j; < ... < j, be the collection
of all indices j in {0,...,n — 1} satisfying I[0,j] € Indg, ie [0,j] €
Bar(V).

Then V* has length ¢4+ 1, and for each integer O < k < /¢ the
quotient S*¥ := V¥ /V*-1 satisfies

i 0 otherwise.



dz, IS not complete!

Kinser (2022) determined all complete central charges

Corollary:
For persistence modules, a central charge

a:@Qo—R

is complete if and only if the inequality a(x;) > a(x;+1) holds for
all i € {0,1,...,0—1}.

Complete charges have been computed for A, D and E quivers.



Skyscraper invariant



Proposition:
Let 0=VOC...C V"=V be the HN filtration of V along §..
If 7 is the smallest index for which V] = V,, then:
(1) either j=nor j=n -1, and

(2) for every 1 <k < j, we have VF =< VF >,

Proof: (1)
dim W,
ps, (W) = ST
yEQo ImWy

But these slopes are strictly decreasing.

(2) By induction.
Use that V! is semi-stable and < V! > is a submodule.
Comparing slopes forces V! =< V! >,



Definition:

Skyscraper invariant §, on Rep(Q) assigns to each representation
V the collection of HN types along skyscraper central charges at
all of the vertices:

oy = {HN[V; ;] | x € Qo}

Proposition
Skyscraper is complete on Repy .



Rank invariant



Definition:
Rank invariant is the map py : Qo X Qo — N given by

pv(z,y) =dim <V, >,

This generalises Carlsson-Zomorodian's (2007) invariant for MPH
to any quiver.

Theorem: The skyscraper invariant is strictly stronger than the
rank invariant.

Proof: (1) p(z,y) = =;_,dim Sk for j as in the Proposition. So
the rank invariant can be recovered.
(2) By example (on a commutative square)



Generalised rank invariant



Definition:
Generalised rank Invariant is the map GRI that for each sub-
quiver Q' C @ assigns the rank of the canonical limit-to-colimit

map,

rk(lim Vg — lim Vig)

This generalises Kim and Mémoli's (2021) invariant for MPH to
any quiver.

T heorem:
The skyscraper and the GRI are not comparable.



Restricting the category



Rep,;s(Q): the category generated by identity representations I[Q’]
on any subquiver Q' C Q.

T heorem:
GRI is complete on Rep,;(Q)

This generalises Kim and Mémoli's (2021) theorem for MPH to
any quiver.

Problem:
Determine a maximal subcategory on which the skyscraper invari-

ant is complete.



Q C Z% grid quiver of shape L = (41,45,...,44)
R = [a1,b1] X --- X [ag, bg] rectangle

Rep,..(Q): subcategory of direct sums of I[R] for R and rectangle
in Q

Theorem:
A central charge a ¢ H is complete on Rep,..(Q) if and only if it
satisfies the inequality a o s(e) > aot(e) for each edge e € Q1.

Proof:
Uses lattice theory and max-flow/min-cut theorem.
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" Data has shape, and shape matters”
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