

Atom-Photon Interface using Nanofiber Cavities with Neutral Atoms

FoPM 2nd International Symposium Feb. 19, 2025

Akihisa Goban, CTO

This document contains confidential and proprietary information of Nanofiber Quantum Technologies (NanoQT). Any use of this material without permission of NanoQT is strictly prohibited.

Company overview

Core technology:

Ultra-low loss nanofiber cavity devices for cavity-QED atom-photon interface

2022 Founded as the 1st quantum computing hardware startup in Japan

22 Patents filed in US

12

Ph.D. scientists/engineers from MIT, Caltech, Oxford, U of Tokyo, etc

+13.5 M USD

Raised capitals from VCs & Government grant from JP and USA

USA/Japan Global location: Tokyo (Hardware), Maryland (Theory) and CA (HQ)

Global locations and operations

Collaboration with C. Simon @**Calgary** (Quantum repeater)

Research visitors/interns from **Harvard/MIT** (Bosonic code, AMO physics)

Palo Alto, CA Headquarter

Co-working member at Japan Innovation Campus

College Park, MD Theory Research Research visitors/interns from UMD/JQI (qLDPC code, Bosonic code)

Research visitors/interns from **EPFL** (Experiment)

Oxford, UK

(Oxford University)

Theory research operation

Collaborator & Partner location Office location

Other collab. in Japan
Takahashi group (Kyoto University)
NTT, etc

Tokyo, Japan Hardware development (Waseda University)

Nanofiber Quantum Technologies | Strictly Confidential 3

Team

Management and corporate						Advisor				
							S		(15 m)	
Masashi Hirose, Ph.D.	asashi Hirose, Akihisa Goban, .D. Ph.D.		Takao Aoki	Dai Tsukada	Rieko Shinohara	Richard Oga Esq.	wa, Vicky Xiac	o, CPA Pro Vu	Prof. Vladan Vuletić	Prof. John Martinis
Co-founder & CEC McKinsey and Company Ph.D. MIT	D Co-founder & Postdoc at W University and Ph.D., Caltect	& CTO Co-fc aseda Profe d JILA Unive h Ph.D. Tokyo	ounder & CSO ssor at Waseda ersity , University of	Head of Global Operation	HR/Office manager	General count and intellectu property advis	sel Finance an al accounting sor	d Ca Jadvisor adv Pro Phy	vity QED visor fessor of vsics, MIT	System Engineering advisor Professor of Physics, UCSB
Kinsey & Company	🛟 🌑 jila		- 	W UNIVERSITIAN WASHINGTON						
R&D										
Hardware						Theory				
Ryotaro Inoue, Ph.D. VP, Quantum System Ph.D. Tokyo Institute of	Hideki Konishi, Ph.D. VP, Photonic Integration Ph.D. Kyoto University	Shinya Kato, Ph.D. Principal Research Scientist Ph.D. Kyoto Univ.	Nicola Komagata, Ph.D. Research Scientist Ph.D. University of Neuchatel	Hideki Ozawa, Ph.D. Research Scientist Ph.D. Kyoto University	Masafumi Shimasaki, Ph.D. Device Engineer Ph.D. Kyoto University	Yusuke Hisai, Ph.D. Research Scientist Ph.D. Yokohama National University	Hayata Yamazaki, Ph.D. Principal Research Scientist (Architecture/Theory) Ph.D. University of Tokyo	Shinichi Sunami, Ph.D VP, Theory and Architecture Ph.D. Oxford University	Shiro Tamiya, Ph.D. Research Scientist (Theory) Ph.D. University of Tokyo	Seigo Kikura, M.S. Research Staff (Theory) M.S. University of Tokyo
rechnologies										

Quantum computing is limited by scalability of hardware

- 1–2 trillion USD value at stake: Chemicals, Pharmaceuticals, Materials, etc.
- However, its performance is limited by the computational resources (qubits)

Progress of Quantum Computing Hardware

Quantum computing is limited by scalability of hardware

- 1–2 trillion USD value at stake: Chemicals, Pharmaceuticals, Materials, etc.
- However, its performance is limited by the computational resources (qubits)

Progress of Quantum Computing Hardware

Current quantum platforms are limited by slow entanglement rates, restricting their practical scalability

Reference: Prof. D. Lucas's talk on ICAP2024

Solution: nanofiber cavity QED platform

Low-loss nanofiber cavity QED @ nanoQT

- Projected large cooperativity *C* > 100, based on
 - FBG loss < 0.02 % [Opt. Lett. 47, 5000 (2022)]
 - Nanofiber loss < 0.03% [Opt. Lett. 45, 4875 (2020)]
- Waveguide with negligible propagation loss
 - Long cavity; couple many atoms at once

Combining nanofiber cQED & free-space atom array

- Optical tweezer array to couple atoms to cavity
- Move the optical tweezer to interface the two zones
- Low profile: significant channel multiplexing

Telecom operation, direct fiber networking

• Neutral Ytterbium atoms:

2

3

- High-fidelity local 1Q and 2Q gates, long coherence time
- Telecom-band transitions for long-distance communication

Solution: nanofiber cavity QED platform

Multiprocessor QPU with atoms

Tweezer array of atoms for quantum computation

State-of-the-art (Harvard, Caltech, Princeton..)

- Lots of progress in 2023-24.
- >99% 2Q gate fidelity, 99.9% expected with laser stability/power improvements
- 1000s of atoms in a single module, 10⁴ expected

Rearranging single-atom arrays

QuEra computing

3. Designing architecture

- Hardware operations: atom transport + zones + nanofiber
- Define *microinstructions* (how to move atoms / when to shine lasers) for each commands in machine language (QECC specific, next page)

Toward multiprocessor neutral-atom FTQC

- Inherently sequential & probabilistic operation means network module is slow
- Fidelity of photon-assisted remote operations are typically limited
- Even for slow neutral-atom QPUs, ~MHz rate needed to keep up with local ops.

Section

Technology overview

Background: Free-space cQED systems

Proof-of-concept of optical quantum computing and networking

Local CNOT gate

S. Welte et al., PRX 8, 011018 (2018).

Remote CNOT gate

S. Daiss et al., Science **371**, 614 (2021).

Scalability

L. Hartung et al., Science 385 179 (2024).

Challenges: Scalability per unit and efficient integration to fiber network

Challenges: Scalability of free-space cQED platforms

Fundamental limit of light in free space

Diffraction limit in a free-space cavity

Trade-off between interaction strength and scalability

- 1. Maximize interaction: Match the size of atom and photon
 - Area of atom (optical): $\sigma_0 \sim \lambda^2 \sim 1 \ \mu m^2$
 - Area of photon: $A \sim \lambda^2 \sim 1 \,\mu\text{m}^2 \leftarrow diffraction limit$
- 2. Maximize scalability: Longer is better
 - Length of photon: $A/\lambda \sim \lambda \sim 1 \,\mu\text{m} \leftarrow diffraction limit$
 - \rightarrow one-atom capacity

Need diffraction-free light propagation for strong interaction and scalability

Solution: Scalability of nanofiber cQED platforms

Diffraction free by nanofiber waveguide

Compatibility of strong interaction and scalability

- 1. Maximize interaction: Match the size of atom and photon
 - Area of atom (optical): $\sim \lambda^2 \sim 1 \,\mu\text{m}^2$
 - Area of photon: $A \sim \lambda^2 \sim 1 \,\mu\text{m}^2 \leftarrow \text{smallest by waveguide}$
- 2. Maximize scalability: Longer is better
 - Length of photon: No fundamental limit,

current. 1 mm \rightarrow ~ 200-atom capacity

Waveguide mitigates the trade off between coupling strength and scalability

Novel approaches with nanofibers

Evanescent trap

Vetsch *et al. PRL* **104**, 203603 (2010). [Rauschbeutel] AG *et al. PRL* **109**, 033603 (2012).[Kimble] Polzik, Orozco/Rolston, Barreiro, Hakuta etc.

> 1000 atoms trapped and probed via nanofiber guided light

Demonstration of Novel quantum optical phenomena

Collective emission: Super/subradiance Solano *et al.*, Nature commun. **8**, 1857 (2017). Liedl *et al.*, PRX **14**, 011020 (2024)

Chiral photon transport

Mitsch *et al.*, Nature Commun. **5**, 5713 (2014). Pucher *et al.*, Nature Photon. **16**, 380 (2022)

Single-photon generation via DLCZ

Corzo et al., Nature 566, 359 (2019)

Quantum memory via EIT

Sayrin *et al.*, Optica **2**, 353 (2015). Gouraud *et al.*, PRL **114**, 180503 (2015)

Nanofiber + cavity: our past experiments

 Strong coupling with cooperativity ~3 using moderate finesse ~ 40 → now we have 4000

Kato and Aoki et al. PRL 104, 203603 (2015).

c.f. Photonic crystal cavity [Thompson *et al.*, Science '13, Tiecke *et al*, Nature '14, Dordevic *et al.*, Sciecne '21, etc]

Coupled distant atom-cavity systems

- Delocalized photonic mode across fiber link due to low-loss connection to the fiber
- Potential application to remote entanglement generation

Kato *et al.*, Nature Commun **10**, 1160 (2019). White *et al.*, PRL **122**, 253603 (2019).

Nanofiber cavity fabrication: visible and near-infrared wavelength

In-house FBG and nanofiber fabrication

FBG mirrors

- ✓ High-finesse FBG cavity: F>10000 [Kato et al. Opt.Lett.'22]
- ✓ Narrowband FBG mirror: Bandwidth: ~ 100 GHz
- ✓ Reproducibility: Accuracy ~ 10 GHz
- Strong birefringence: > 100 MHz polarization-mode splitting

Nanofiber

 ✓ Low-loss nanofiber cavity at near-infrared and telecom bands: Finesse > 4000

[Ruddel et al., Opt. Lett. '20, Horikawa et al., in preparation]

1. Create small refractive index modulation by scanning DUV laser

2. Heat and pull the central region

Optical tweezer array + nanofiber

In-situ beam profiling a tweezer spot

Generate multiple spots with SLM

Reflection of multiple tweezer beams

Measured tweezer spots by a CMOS camera

- Current system: max # of spots ~20 w/ 5 um separation
- New system (design phase): max # ~200

Example image of reflected tweezer beams

Our current PoC experiment with Cs atoms

Single-atom detection

Close-up view of the nanofiber cavity in the vacuum

Multiple atoms near the nanofiber

Detection of a single atom via cavity

On-going: Generation of atom-photon entanglement

Pursuit of ideal netural atom qubits

• Electron-spin qubits:

Challenge: sensitive to noise, i.e. magentic field

New system: Yb, Sr

Atom computing, Planqc

• Nuclear-spin qubits:

Advantage: ~ 1000 times less sensitive to noise

• Telecomband photon generation: Compatible w/ optical fiber network

Coupling Yb atom qubits to telecom-band cavity

Interfacing Yb atoms with a nanofiber cavity

Optical-metastable-ground state architecture enables

- Coherently connect storage and interaction qubit states
- Selective atom-cavity coupling

Multiple telecom transitions:

1389 nm, 1480 nm and 1539 nm available for ³P_x-³D_y lines [Cov et al, '19, etc]

Other fundamental and technical challenges are mediated by:

- Nuclear spin ¹/₂:
 - Ideal qubit system: >99.9 % Singe qubit control
 - Long coherence time > 10 sec
- No cross talk between storage and interaction states:
 - > 99.9% fidelity SPAM

Ref:

· Yb numbers : Thompson, Kaufman group, Atom computing

On-going development of Yb system

Design overview of cold atoms preparation

Cooling / trapping / imaging

- 2D+MOT cold atom source
- Narrow-line MOT below the nanofiber
- Out-vacuum objective with NA=0.5
- Magic wavelength (759 nm) tweezers
- Background-free imaging at 399 nm with 556 nm cooling

Clock laser + Frequency chain

- Frequency stabilization via an optical frequency comb
- Collaboration with Yasuda/Inaba group @ AIST

Tweezer array in free space \rightarrow Telecomband single-photon generation

1. Making the network module scalable

- **Time multiplexing**; parallelizing as much as possible with 100s of atoms
- Needed to achieve rate bounded by cavity speed, reaching 100 kHz (100s of pairs / EC cycle)

1. Making the network module scalable

- **Channel multiplexing** with small-footprint nanophotonic cavity
- Unique feature of nanofiber: negligible waveguide loss

1. Making the network module scalable

- Channel multiplexing with small-footprint nanophotonic cavity
- Unique feature of nanofiber: negligible waveguide loss

2. Fidelity of generated Bell pairs

Ref. Prof. D. Lucas's talk on ICAP2024

State-of-the-art:

- Record: >97% by Oxford ion trapper
 @ limited success rate (<kHz)
- Not clear when/whether >99% achieved
- Even with 99%, teleported CNOT will be worse.

Architecture needs to have room to accommodate **few % error** in Bell pair

2. Working around low fidelity with distillation

- Network cost: k physical Bell pair × # states needed for distillation (10s)
- Allowed initial infidelity % order expected
- Ongoing: state injection and distillation protocol development

Theory and Architecture design

Theory team & Collaborators

Ph.D. Oxford University

Hayata Yamazaki. Ph.D. Principal Research Scientist (Architecture/Theory) Ph.D. University of Tokyo

Shiro Sunami, Ph.D. Tamiya, Ph.D. **Research Scientist** VP. Theory and (Theory) Architecture

Yosuke Ueno, Ph.D. Visiting Research Scientist (Theory) Ph.D. University of Tokyo Ph.D. University of Tokyo

Seigo Kikura, M.S. **Research Staff** (Theory) M.S. University of Tokyo

Collaborators

Quantum repeater design

C. Simon (Calgary) •

Bosonic code

V. Albert (UMD)

Cavity-assisted atom-photon gate

O. Rubies-Bigorda (MIT, Yelin group)

TN simulation/decoding of surface code

A. Darmawan (Kyoto)

Multiprocessor FTQC architecture

- NTT quantum group
- etc..

Quantum information / FTQC

Shinichi

- Computer system architecture design and evaluation
- High-rate QEC (qLDPC, Concat. codes)
- Quantum algorithms, quantum machine learning

AMO / microarchitecture

- Design FTQC implementation with atom array + cavity
- High-speed, high-fidelity atom-photon protocol devevelopment

Big picture: computer architecture

Sorting with computer architecture layers:

Overview of Atom-photon interface

- Technology of nanofiber cavity
- Development outline (FY~25): PoC of Yb atom-photon entanglement at telecom-band

Rate fidelity estimation:

- Optimized cavity parameter for highrate entanglement generation
- Infidelity due to photon recoil

Modular QPU architecture

 High-rate concatenated code for modular computation

We are global team

Our team members come from various institutions around the world:

Please visit our website; https://www.nano-qt.com/careers

Current Openings

