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Outline

* How do we map dark matter in the universe?
* How do we compare observed maps to theory?

* How can we do cosmology with deep learning?



The expanding universe

EVOLUTION OF
THE UNIVERSE the Solar syste

Figure from Cherifa Bochra Soltani



https://medium.com/@cbochras?source=post_page---byline--4ca7ca28a3c6---------------------------------------

Gravitational lensing
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Figure from Jim Bosch

Measured shapes of galaxies help us map the full mass distribution.
In reality the signal is a 0.1 percent coherent pattern!




A large scale map of dark matter
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Lensing mass map: using the lensing distortions of ~100 million galaxies



Gilant clusters
and voids
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But first, what do we do with all this data?



Two cosmic puzzles: the Hp and Sg tensions

e The Ho tension: The universe is expanding faster than ‘predicted’, i.e. using

the baseline model of cosmology, ACDM, to extrapolate early time
measurements to the present.

¢ The Ss tension: Growth of large-scale structure in the universe is slower

than predicted.
e The Sgtension shows up in multiple measurements of the late time universe but
only at ~2-sigma.

e The nature of dark matter and dark energy + the two cosmic puzzles + the
origin of the Big Bang universe drive much of the research in cosmology



How does data confront theory?

The standard model of cosmology has 6+ parameters — numbers that define
— The energy budget: densities of dark matter, baryons, dark energy, neutrinos
— Initial fluctuations: amplitude and slope of the mass power spectrum

— H expansion rate / Age of the universe

Measurements are compared to predictions by varying these parameters
using Bayesian statistics + MCMC sampling of parameter space

Key questions answered by this exercise:
— Is the model a good fit?
— What are the values of its parameters? Do they agree with other surveys?

— lIs an alternative model a better fit?

— We will start with a conventional approach, then dive into Deep Learning



Random vs clustered points
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How can we measure clustering?



Dark Energy Survey mass map
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Lensing mass map: using the lensing distortion for ~100 million galaxies



Clustering statistics

We measure the 2-point correlation function between two variables as a
function of angular separation, 6:

(Density(0,)Density(6,) ywhered = |0, — 6, |
The idea is to measure the strength of fluctuations on different length scales.
The 2-point function compresses the data very effectively.

Its Fourier transform is the power spectrum.



Spatal clustering in the early vs. late universe
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Age = 400,000 years Age = 10 billion years

The universe ~today is less clustered than ‘predicted’ by the theory.

This is the ‘second cosmic puzzle’, called the S8 tension.

mab val.e



Structure mismatch — the Sg tension

Predicted by theory Inferred from lensing data

How can we compare these maps, using all the information they contain?



Can we extract more mformation?

# 2-point correlations capture all the information in a Gaussian field but
not from the observed maps of the evolved universe.

* Mining ‘non-Gaussian’ regime can ~double the information content.
How?

convergence PDF

* N-point correlations ™
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* Field level inference with deep learning or BHM



Leaping into the unknown with deep learning
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Deep Learning for Gravitational Lensing

Weak lensing is well suited for Deep Learning: the uncertain physics
(baryonic feedback and Intrinsic Alignments) is well bounded*

We can generate simulated maps to train a deep learning model and then
apply it to extract information from survey maps

First, let’s build a model to generate large-scale structure.

18



Diffusion — the main 1idea

Progressively add noise to the image until we just have white noise
(We completely control this step via a Stochastic Differential Equation)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Slide from Supranta Bouruah



Why ditfusion 1s usetul for generative modeling?

Important result: Any SDE of this form can be reversed!

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

Reverse stochastic differential equation requires the gradient of the log probability, a.k.a score
Train neural networks to predict the score, at different noise level

Once trained, neural networks can be used to transport latent space noise to samples from the data distribution

Slide from Supranta Bouruah




Bin 1

Bin 2

Diffusion models: noisy data == underlying field

® Use generative Al to learn the “prior’ distribution of mass maps
e Reconstruct mass map from noisy survey data with no additional training!

e High resolution maps with uncertainty estimates — fast and robust
Bouruah, Jacob, BJ 2025, arXiv:2502.04158

21



And now for an “anti-ML.” result

We found an analytical method that also generates simulation quality
maps!

It is accurate at lower resolution — good for real surveys, and still highly
nonlinear.

22



Analytical Lensing Maps

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 7 Nov 2024]

Fast Generation of Weak Lensing Maps with Analytical Point
Transformation Functions

Kunhao Zhong, Gary Bernstein, Supranta S. Boruah, Bhuvnesh Jain, Sanjit Kobla

Nonlinear cosmological fields like galaxy density and lensing convergence can be approximately related to
Gaussian fields via analytic point transforms. The lognormal transform (LN) has been widely used and is a
simple example of a function that relates nonlinear fields to Gaussian fields. We consider more accurate
General Point-Transformed Gaussian (GPTG) functions for such a mapping and apply them to convergence
maps. We show that we can create maps that preserve the LN's ability to exactly match any desired power
spectrum but go beyond LN by significantly improving the accuracy of the probability distribution function
(PDF). With the aid of symbolic regression, we find a remarkably accurate GPTG function for convergence
maps: its higher-order moments, scattering wavelet transform, Minkowski functionals, and peak counts
match those of N-body simulations to the statistical uncertainty expected from tomographic lensing maps of
the Rubin LSST 10 years survey. Our five-parameter function performs 2 to 5X better than the lognormal. We
restrict our study to scales above about 7 arcmin; baryonic feedback alters the mass distribution on smaller
scales. We demonstrate that the GPTG can robustly emulate variations in cosmological parameters due to the
simplicity of the analytic transform. This opens up several possible applications, such as field-level inference,

rapid covariance estimation, and other uses based on the generation of arbitrarily many maps with laptop-
level computation capability.

Three steps:
1. Gaussianize nonlinear field using its pdf.
2. Match power spectrum exactly.
3. Generate new Gaussian field and invert to get new maps.
23



Simulated vs. Analytical mass maps

N-body map 5-parameter model
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We can pick up some subtle differences by eyes, but all statistical tests pass at the
accuracy of real surveys. We can generate millions of ‘analytic’ kappa maps on a
laptop! Current simulations take days to run on a supercomputer.
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Another analytical method applied to a variety of physical
phenomena

scattering coefficients

Figure 2. Texture synthesis using the scattering transform for a variety of physical fields: Turing pattern, Ising model, ocean turbulence, solar surface, cosmic
matter density. The upper panels show input 2-D fields from simulations or observations. The lower panels show randomly generated fields with scattering
coefficients matching their upper counterparts.

Wavelet like transform can reconstruct non-Gaussian stochastic fields. Cheng & Menard 2021 25



Back to Deep Learning: Application to Data
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Deep learning summary

We have seen how to generate and reconstruct dark matter maps.
Analytical methods keep showing up and helping or replacing ML!
Deep learning framework for cosmology (including inference) is powerful.

Validating and community acceptance are at early stages.
27



Open questions

* What does deep learning learn? Hard to tell, but we must try!

Fruitful area of collaboration with computer scientists, radiologists...

K/

* How much information do these maps have?

Deep learning extracts all the information...under certain assumptions. How close
are we to that regime in different problems in the natural sciences?

* What are the common features of natural phenomena?

* Hierarchical structures, long range interactions, energy flow...??
Can these shared features enable a multi-modal ‘foundation model’, a chatGPT for
science?



How to approach ML in science: practical tips

# There are many tools of ML and many architectures for Deep Learning

Courses are good, but don’t hesitate to jump in when an opportunity comes up
(chatGPT and co are great tutors!).

- Learn about CNNs and Transformers — the oldest and youngest Deep
Learning models.

CNN s for images & Transformers for language, time series data and more.

Transformers for science, an informal review: Tanoglidis, BJ, Qu. arXiv:2310.12069

» Use Al assisted coding and Huggingface to download the best
performing software.

And follow developments in the ML literature — use arXiv + blogs + Al summaries



Patterns, Patterns, Patterns

Patterns of ‘light” in cities, cosmology and neurons.

A great time for scientists and Al experts to work together!

Thank you Hitoshi, Masahiro and all the organizers!



Spare slides



The CMB power spectrum
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Power spectra of CMB temperature fluctuations.

Blue curves: best fit ACDM model with 6+ free parameters.
Planck Collaboration 2018



Structure mismatch — the Sg tension
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