Status and Plans for the DUNE Near Detector

Xinchun Tian for the DUNE Collaboration

Department of Physics and Astronomy

NuInt 2015 @ Osaka, Japan, Nov. 16-21, 2015

Outline

Introduction

Reference Design (FGT) and Physics Sensitivities

- High Resolution Fine-Grain Tracker (Reference Design)
- Measure Absolute Flux
- QE and Resonance Processes
- Constrain Nuclear Effects

3 Alternative Designs

- Liquid Argon TPC
- High Pressure Argon Gaseous TPC
- NuPRISM

Deep Underground Neutrino Experiment

See Elizabeth Worcester's talk: • Link

Deep Underground Neutrino Experiment

NuInt15: DUNE Systematics

4

- Constrain the systematic uncertainties in the oscillation measurements/searches
 - Neutrino source : ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$ in "PMNS oscillation ($0.5 \le E_{\nu} \le 10$ GeV)" and "Control and New Physics ($0.10 \le E_{\nu} \le 50$ GeV) regions"
 - Neutrino and Anti-neutrino energy-scale / topologies
 - Backgrounds to the oscillation signals: π^0/π^\pm
- A generational advance in the precision neutrino physics
 - Cross sections: QE, Resonance, Coherent meson and DIS
 - Neutrino-nucleus (Ar) interactions and nucleon structure
 - Electroweak and isospin physics
- Search for New Physics
 - Heavy neutrinos, including "Light Dark Matter" search
 - Large Δm^2 oscillation
 - etc.

High Resolution Fine-Grain Tracker (Reference Design)

Introduction

Reference Design (FGT) and Physics Sensitivities

- High Resolution Fine-Grain Tracker (Reference Design)
- Measure Absolute Flux
- QE and Resonance Processes
- Constrain Nuclear Effects

3 Alternative Designs

- Liquid Argon TPC
- High Pressure Argon Gaseous TPC
- NuPRISM

High Resolution Fine-Grain Tracker (Reference Design)

- $\sim 3.5 \text{ m} \times 3.5 \text{ m} \times 6.5 \text{ m} \text{ STT}$ ($\rho \simeq 0.1 \text{ g/cm}^3$)
- 4π ECAL in a dipole magnetic field (B = 0.4 T)
- 4π MuID (RPC) in dipole and up/downstream
- Pressurized ^{40}Ar target $\simeq \times 10$ FD statistics and ^{40}Ca target
- Trasition Radiation : e^{\pm}
- dE/dx : π^{\pm} , K^{\pm} and proton
- Magnet : + .vs. -
- MuID : μ \Rightarrow Absolute flux measurement

Radiator (Target) Mass	7 tons
Other Nuclear Target Mass	1-2 tons
Vertex Resolution	0.1 mm
Angular Resolution	2 mrad
E_e Resolution	$6\%/\sqrt{E}$
	(4% at 3 GeV)
E_{μ} Resolution	3.5%
$\nu_{\mu}/\bar{\nu}_{\mu}$ ID	Yes
$\nu_e/\bar{\nu}_e$ ID	Yes
π^- .vs. π^+ ID	Yes
π^+ .vs. proton .vs. ${\it K}^+$	Yes
$NC\pi^0/CCe$ Rejection	0.1%
$NC\gamma/CCe$ Rejection	0.2%
$CC\mu/CCe$ Rejection	0.01%

Constrain Absolute/Relative Flux

Introduction

Reference Design (FGT) and Physics Sensitivities

• High Resolution Fine-Grain Tracker (Reference Design)

Measure Absolute Flux

- QE and Resonance Processes
- Constrain Nuclear Effects

3 Alternative Designs

- Liquid Argon TPC
- High Pressure Argon Gaseous TPC
- NuPRISM

Absolute Flux: Neutrino electron NC/CC scattering

- Cross section is extremely small, but assuming 1.2 MW beam power, 5 tons ND fiducial mass, 5 years neutrino running
 - 10 k $\nu e^- \rightarrow \nu e^-$ events, 78 k $\nu_\mu e$, 1.7 k $\bar{\nu}_\mu$, 1 k $\stackrel{(-)}{\nu}_e e$
 - 5.4 k $\sigma(\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e})$ events
- Single, forward e⁻
- Absolute flux : $\sim 2\%$ precision in 0.5 $\leq E_{\nu} \leq 10$ GeV range.
- Single, forward μ^-
- Absolute flux : $\sim 2.5\%$ precision in $15 \le E_{\nu} \le 50$ GeV range.

Constrain Cross Sections

Introduction

Reference Design (FGT) and Physics Sensitivities

- High Resolution Fine-Grain Tracker (Reference Design)
- Measure Absolute Flux
- QE and Resonance Processes
- Constrain Nuclear Effects

3 Alternative Designs

- Liquid Argon TPC
- High Pressure Argon Gaseous TPC
- NuPRISM

QE Candidates in NOMAD

FGT will have $\sim \times$ 10 higher granularity vs NOMAD

Resonance Candidates in NOMAD

FGT will have \sim imes 10 higher granularity vs NOMAD

Constrain Nuclear Effects

Introduction

Reference Design (FGT) and Physics Sensitivities

- High Resolution Fine-Grain Tracker (Reference Design)
- Measure Absolute Flux
- QE and Resonance Processes
- Constrain Nuclear Effects

3 Alternative Designs

- Liquid Argon TPC
- High Pressure Argon Gaseous TPC
- NuPRISM

Compare $E_{\rm vis} - E_{\nu}^{\rm calc}$ using CCQE 2-track

Nuclear effects: initial state pair wise correlations & final state interactions •

$$E_{\rm vis} = E_{\mu} + E_{\rm had},\tag{1}$$

$$E_{\nu}^{\text{calc}} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 - 2M_nE_B + m_{\mu}^2 + \delta M^2)}{2[(M_n - E_B) - E_{\mu} + p_{\mu}\cos\theta_{\mu}]},$$
(2)
$$\delta M^2 - M^2 - M^2$$
(3)

$$\delta M^2 = M_n^2 - M_p^2. \tag{3}$$

Alternative Designs

Introduction

Performance Design (FGT) and Physics Sensitivities

- High Resolution Fine-Grain Tracker (Reference Design)
- Measure Absolute Flux
- QE and Resonance Processes
- Constrain Nuclear Effects

3 Alternative Designs

- Liquid Argon TPC
- High Pressure Argon Gaseous TPC
- NuPRISM

The DUNE collaboration has set up a task force that will be in place over the next 18 months and is charged with understanding the relative merits of the three detector options

- Fine-Grained Tracker (Reference Design)
- Liquid Argon TPC
- High Pressure Argon Gas TPC

- The international ArgonCube collaboration has submitted an Lol to CERN SPSC
- Novel implementation of LAR TPC technology
 - Modularity and scalability
 - Pixelized charge readout
- Potential applicability for DUNE ND
 - LAr
 - Modularity and pixels : high rate capability
 - Can be magnetized : compatible with 0.4 T field

High Pressure Argon Gas TPC, George Christodoulou, Liverpool

Basic design of the HP TPC for DUNE

Xinchun Tian (USC, Columbia)

The ND complex, with a high resolution FGT, will:

- Determination of the relative abundance and of the energy spectrum of the four neutrino species in DUNE beam: ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$
 - Extrapolation to FD and predictions of FD/ND($E_{
 u}$) fluxes to $\sim 1\%$
- Determination of the absolute ν_{μ} and $\bar{\nu}_{\mu}$ fluxes to \sim 2% for oscillation measurements
- Measure cross sections and exclusive topologies of NC & CC interactions
- Calibration of the absolute neutrino energy scale in ν ($\bar{\nu}$)-Ar interactions
- Quantify asymmetries between ν and $\bar{\nu}$ (energy scale, flux, interactions) for $\delta_{\rm CP}$

The DUNE collaboration has set up a task force that is charged with understanding the relative merits of the three detector options

- Fine-Grained Tracker (Reference Design)
- Liquid Argon TPC
- High Pressure Argon Gas TPC

Xinchun Tian (USC, Columbia)

DUNE ND@NuInt 2015

Backups

Straw Tube Tracker (Panjab Univ.)

Geant4 schematic of STT with Radiator

- Straw inner diameter: 9.530 ± 0.005 mm
- Operate with 70%/30% Xe/CO₂ gas mixture
- Raidator/target thickness \sim 20 mm with 75 (C₃H₆)_n foils (40 μm) for transition radiation and tulle spacers
- Straws arranged in double layers glued together inserted with C-fiber/Al composite frames
- 166 modules arranged by alternating vertical and horizontal orientation with total length of 7 m
- Mass of the active target dominated by the radiators (82.6% of the total mass) can be tuned to achieve desired events and momentum resolution

DUNE ND@NuInt 2015

Electromagnetic Calorimeter (IIT, Guwahati & Delhi Univ.)

- Leadscintillator based on the T2K-ECAL, embedded inside the 0.4 T dipole magnet
- 58 layers of alternating horizontal/vertical scintillator strips per 1.75 mm Pb along the z-direction
- Plastic Scintillator bars: 4 m × 2.5 cm × 1.0 cm, 160 bars/layer, 9,280 bars in total
- Two sided readout

Xinchun Tian (USC, Columbia)

DUNE ND@NuInt 2015

112015 21 / 19

Magnet (Bhabha Atomic Research Center)

- 4.5 m \times 4.5 m \times 8 m inner dimensions
- 2.4 MW, 60 cm thick steel
- 0.4 T magnetic field
- <2% magnetic field variation over inner volumne

MuID - RPC (Variable Energy Cyclotron Center)

- Muon Range Detector identify muons at low momenta exiting the sides of the detetor
 - 32 RPC planes interspersed between 20 cm thick layers of steel
- External Muon Identifier identify high energy forward muons

Z position Radiography – NOMAD Tracker

Resolution of FGT will be much better

Figure: A neutrino radiograph of the NOMAD drift chambers shows the internal structure of the tracking volume. It illustrates the high resolution of the z-postion of the vertex.

Xinchun Tian (USC, Columbia)

DUNE ND@NuInt 2015

- Problem: simplest of interactions, *e.g.* QE, Resonance, are obfuscated by nuclear effects (2-particle correlation, FSI). Furthermore, these effects could affect the antineutrino differently from neutrino.
- The key is: the measurement of the hadron-vector
 - ν-QE: 2-track events
 - $\nu^{(-)}$ -Resonance : 2/3-track events
 - Coherent π^{\pm}
 - With missing $p_t < 300 \text{ MeV} (\sqrt{t} < 5 \text{ MeV})$
 - Identical topology in u_{μ} .vs. $\bar{
 u}_{\mu}$ (to the first order little nuclear-effect)

Coherent π/ρ Production – Constraining Absolute Flux

$$\nu_{\mu} + \mathcal{A} \to \mu^{-} \mathcal{A} + \pi^{+}(\rho^{+}) \ (CC) \tag{4}$$

$$\nu_{\mu} + \mathcal{A} \to \nu_{\mu} \mathcal{A} + \pi^{0}(\rho^{0}) (NC)$$
(5)

- Measure coherent ρ with \sim 2% precision
- Tie the neutrino measurement to photo-production and extract flux to determine the absolute flux $\sim 5\%$ precision
 - Dominated by systematics in relating neutrino to electron (CVC)
- Critical measureables
 - $\pi^{0,\pm}$ momentum vectors
 - Veto additional particles : secondary tracks in STT and calorimeter
 - MuID : RPC

QE FSI Effects : C .vs. Ca .vs. Ar using GENIE & GiBUU

HRI with Carolina Group

Xinchun Tian (USC, Columbia)

112015 27 / 19

Res FSI Effects : C .vs. Ca .vs. Ar using GENIE & GiBUU

Xinchun Tian (USC, Columbia)

112015 28 / 19

Relative Flux: Low- ν_0 method

- Relative $\nu_{\mu},\,\bar{\nu}_{\mu}$ flux .vs. energy from low- ν_{0} method

$$N(E_{\nu}, E_{\text{Had}} < \nu_0) = k\Phi(E_{\nu})f(\frac{\nu_0}{E_{\nu}})$$
(6)

• The correction factor $f(rac{
u_0}{E_
u})
ightarrow 1$ for $u_0
ightarrow 0$

$$f(\frac{\nu_0}{E_{\nu}}) = 1 + (\frac{\nu_0}{E_{\nu}})\frac{\mathcal{B}}{\mathcal{A}} + (\frac{\nu_0}{E_{\nu}})^2\frac{\mathcal{C}}{2\mathcal{A}} + \dots$$
(7)

• In practice use MC to calculate the correction factor normalized at high E_{ν}

$$f(E_{\nu}) = \frac{\sigma(E_{\nu}, E_{\text{Had}} < \nu_0)}{\sigma(E_{\nu} \to \infty, E_{\text{Had}} < \nu_0)}$$
(8)

- Need precise muon energy scale and good resolution at low u values
- Main systematic uncertainties
 - Muon (Hadronic) energy scale
 - Detector smearing and effects of ν_0 cut
 - Cross sections (anti)neutrino-nucleus (QE, Res, DIS) and FSI
 - Backgrounds and selection cuts

Questions for the FGT during the 3 Reviews in the summer of 2015

- Energy scale of neutrino and antineutrino
- Constraint/measurement on the beam diversion
- Signal characterization: ν_e & $\bar{\nu}_e$
- Backgrounds from the outsize: γ , neutrons (dirt events)
- Pileup in the ECAL
- Nuclear Effect: Ar vs Ca
- Quantify how to "translate" ND measurements to FD: full simulation and reconstruction on physics sensitivities

Minimal set of Questions for any given ND option

- Sensitivity (precision) to the absolute flux measurement of ν_{μ} : neutrino source
- Precision on the un-oscillated relative flux, FD/ND (E_{ν}), for ν_{μ} , $\bar{\nu}_{\mu}$: neutrino source
- Precision on ν_e/ν_μ ($\bar{\nu}_e/\bar{\nu}_\mu$) at the FD : signal Efficiency and purity of π^0 from NC .vs. CC : background
- Precision on the "wrong-sign" contaimination
- Efficiency and purity for ν_e -CC : interaction model
- Efficiency nad purity for $\nu_\mu\text{-induced}$ QE and resonance: interaction model
- Error on the energy-scale of neutrino and antineutrino: interaction model (In-situ constraints on the initial and final state interactions in Ar)

Neutrino-Nuclear Interactions

- Main target polypropylene $(C_3H_6)_n$ foils in radiators: mass ~ 5 t
- Multiple nuclear targets in STT: (C₃H₆)_n radiators, Ar gas (×10 statistics of FD), H₂O, D₂O, Ca, Fe, Pb
 - Separation from excellent vertex (\sim 100 $\mu m)$ and angular < 2 mrad resolutions
- Pressurized Ar Gas target (\sim 140 atm) inside C tubes and solid Ca target provide detailed understanding of the Far Detector A=40 target

- Magnetized and 4π coverage
- Same target as the DUNE Far Detector
- Pressure and target flexibility
 - He, Ne, Ar, CF_4 can be used to study A-dependence and FSI
- Excellent PID
- Low density and low thresholds
 - Sensitivity to < 100 MeV/c protons and < 25 MeV/c muons and pions
 - Model testing and generator tuning
 - 2p2h, spectral functions, FSI
 - 1π high mass resonance