

An Intermediate Water Cherenkov Detector at J-PARC

Mark Scott for the Hyper-K proto-collaboration NuInt15 20th Nov 2015 – Osaka University

Discovering leptonic CP violation

- Hyper-K designed to measure CP violation
- Require 3% total uncertainty on neutrino events, 6% on anti-neutrino
- Experiment will be systematics limited!

TRIUMF

Systematics at T2K

Source of uncertainty	$ u_{\mu} \ CC$	$ u_{ m e} \ CC$
Flux and common cross sections		
(w/o ND280 constraint)	21.7%	26.0%
(w/ND280 constraint)	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
FSI + SI(+ PN)	3.0%	2.5%
Total		
(w/o ND280 constraint)	23.5%	26.8%
(w/ND280 constraint)	7.7%	6.8%
K. Abe et al. (T2K Collaboration) Phys. Rev. D 91, 072010		

- Near detectors essential 24% → 3%
- 5% independent cross section uncertainty:
 - Carbon → Oxygen extrapolation
 - No sample to constrain some interaction modes

- Fundamentally limited by
 - Low Oxygen/Carbon ratio
 - Insensitive to far detector backgrounds
 - Low reconstruction efficiency for particles perpendicular to beam

An intermediate detector

- Large (kiloton scale) water Cherenkov (WC) detector 1-2 km from beam target
 - Water target
 - 4π coverage
 - Same signal and background modes as far detector
 - Smaller near → far extrapolation systematic than T2K near detector

FRIUMF

TITUS

- Tokai Intermediate Tank to measure the Unoscillated Spectrum
- 2km from beam target
- Cylindrical WC with long axis parallel to beam
- PMTs interspersed with large area picosecond photo-detectors (LAPPDs) if available
- Magnetised muon range detector (MRD)

Detector acceptance

- Muon neutrino selection efficiency at TITUS for two orientations of detector
 - Vertical detector cannot reconstruct high momentum muons
 - Loses some of the flux $\sim \cos(\theta) = 1$
- Parallel orientation 18% of muons escape tank

Magnetised Muon Range Detector

- 1.5T magnetised iron tracking detector
 - Iron interleaved with air gaps and scintillator
 - Measure lepton charge
 - 90% to 95% efficient for muons with momentum from 0.5 to 2 GeV

RIUMF

- Complements Gd
- Side magnetised MRD sample high Q² region
- Proof of principle: Baby-MIND detector (University of Geneva)
 - Will be used for Wagasci experiment at J-PARC
 - Use data to optimise design for T2HK

Gadolinium doping

- Can be used by both TITUS and NuPRISM studied at TITUS so far
- Neutrons capture on Gd
 - 49,000b capture cross section
 - 8 MeV gamma cascade, 4-5 MeV visible
 - 0.1% doping → 90% neutrons capture on Gd

 Tag presence of neutron in final state – statistically separate neutrino CCQE interactions from others

$$\begin{array}{ll} & - & \nu_{\mu} \mbox{ CCQE:} & \nu_{\mu} + n \rightarrow \mu^{-} + p & 0 \mbox{ neutrons} \\ & - & \overline{\nu}_{\mu} \mbox{ CCQE:} & & \overline{\nu}_{\mu} + p \rightarrow \mu^{+} + n & 1 \mbox{ neutron} \end{array}$$

CCnQE backgrounds often produce neutrons

Gadolinium doping

- Neutrino energy resolution assuming CCQE kinematics in TITUS
 - 0 neutrons \rightarrow higher CCQE purity
 - Improved energy resolution
 - Also improves anti-neutrino selection
- If NEUT model is correct, combination of MRD + Gd gives 96% pure $\nu_{_{\!\!\!\!\!\mu}}$ and $\overline{\nu}_{_{\!\!\!\!\mu}}$ samples at T2HK neutrino flux peak

UMF

TITUS oscillation study

- Markov Chain MC analysis
 - 6% flux uncertainty, 100% correlated between TITUS and HK, 60% correlated between neutrino (FHC) and anti-neutrino (RHC) beams
 - Using T2K interaction model uncertainties
 - 10% neutron tag efficiency uncertainty
 - No near detector constraint
- Fit single ring, muon-like and electron-like samples in FHC and RHC beam
 Parameter Nominal value and Prior Uncertainty
- Equal split of POT between FHC and RHC beams

Parameter	Nominal value and Prior Uncertainty
δ_{CP}	0.0, uniform in δ_{CP}
$\sin^2 2 heta_{13}$	0.095, uniform in $\sin^2 2\theta_{13}$
$\sin^2 2 heta_{23}$	$1.0 \pm 0.03 \ (\approx \sin^2 2\theta_{23} > 0.95 \text{ at } 90\% \text{ CL})$
$\sin^2 2 heta_{12}$	0.857 ± 0.034
Δm^2_{32}	$2.32 \pm 0.10 imes 10^{-3} \ { m eV^2}$
$\Delta m^{2^-}_{12}$	$7.5 \pm 0.2 imes 10^{-5} \ { m eV^2}$

- Note, this is best case scenario:
 - Effect of Gd on event reconstruction not included assume current SK selection efficiency at HK
 - Assumes nucleon final states predicted by NEUT are correct

$\delta_{_{\rm CP}}$ Precision

- Measurement precision at $\delta_{_{\rm CP}} = 0$
 - No constraint from ND280
 - NEUT nuclear model
 - SK selection efficiencies
- Binary neutron tag in near and far detectors - 17% improvement in precision

- Need to understand hadronic side of interactions to achieve this:
 - Predictions for hadronic side of interaction
 - Improved FSI models
 - Measurements at dedicated experiments

NuPRISM

- WC detector spanning $1^{\circ} 4^{\circ}$ from the neutrino beam axis
 - 52.5m tall if 1km from neutrino production target
- Instrument movable cylinder:
 - Inner Detector (ID): 6 or 8m diameter, 10m tall
 - Outer Detector (OD): 10m diameter, 14m tall ullet
- OD surrounded by scintillator panels
- All studies assume 2.2e²¹ POT exposure (0.5 * T2K)

v Oscillation with NuPRISM **RIUMF**

- Recreate oscillated neutrino flux at HK using near detector
- Directly measure muon $p-\theta$ for given value of oscillation parameters

20

RISM Flux Fit

 $\Delta m^{2}_{32}=2.41e-3$

Mono-energetic beams

Mono-energetic beams

Mono-energetic beams in practice

- Gaussian neutrino beams with neutrino energy from 400 MeV \rightarrow 1200 MeV
 - Determined by off-axis angular span of detector
- Full T2K flux error shown
- High energy tail almost completely cancelled

Mark Scott, NuInt15, Osaka

TRIUMF

How can we use them?

- Clear separation between quasi-elastic (QE) and non-QE events
- Measure quatities of interest (neutron multiplicities, cross sections):
 - As function of true neutrino energy
 - In same detector \rightarrow highly correlated flux and detector systematics

RIUMF

Mark Scott, NuInt15, Osaka

How can we use them?

UMF

- Provides more information on neutrino interactions
- Clear separation between quasi-elastic (QE) and non-QE events
- Measure quatities of interest (neutron multiplicities, cross sections):
 - As function of true neutrino energy
 - In same detector \rightarrow highly correlated flux and detector systematics
 - Can also calculate Q^2 or ω

Short baseline oscillations

- NuPRISM (TITUS) same L/E range as LSND and MiniBooNE sterile results
- Neutrino flux variation across NuPRISM provides unique capabilities
 - Directly probe oscillation curve
 - Constrain backgrounds
 - Energy dependence
 - Direct measurements

Mark Scott, NuInt15, Osaka

Signal and background

1000

- Search for $\nu_{_{e}}$ appearance using $\nu_{_{\mu}}$ events to constrain flux
- Full T2K flux and cross section uncertainties included

Points = Appearance signal Red = Intrinsic v_e bkgd Blue = v_{μ} bkgd

- On-axis (top)

 - Broad signal distribution
- Off-axis (bottom)
 - Very little v_{μ} contamination
 - Signal peaked at low reconstructed energy

2

1.5

0.5

2.5

3

3.5

EREC(GeV)

27

Sterile sensitivity

- Excludes entire LSND allowed region at 90%, most of it at 5σ
- Expect results to improve:
 - Full reconstruction and selection
 - Direct constraint of backgrounds
 - Include T2K near detector

Summary

- Experiments becoming systematics limited
- T2K experience has shown intermediate detector must have:
 - Same nuclear target
 - Same acceptance
 - Same signal + background
 - Kiloton scale WC detector 1-2km from neutrino production target
- Two proposals TITUS and NuPRISM
 - TITUS 2km from target
 - Novel MRD + Gd increase acceptance and sign-select lepton
 - NuPRISM 1km from target, large off-axis angle coverage
 - Unique probe of cross-sections and sterile neutrinos
 - Oscillation analyses largely independent of interaction model

Backup slides

T2K multi-nucleon study

- MC-based analysis using full detector simulation, full systematics etc.
- Three fake datasets
 - Nominal NEUT MC
 - NEUT + meson exchange current (MEC) events from Nieves' model -Phys. Rev. C, 83:045501, Apr 2011
 - NEUT + MEC events based on Martini's model -Phys. Rev. C, 81:045502, Apr 2010
- Perform disappearance fit to extract θ_{23} in each case and compare

• Both models give ~3.5% RMS in $\sin^2 \theta_{23}$, Martini model introduces ~3% bias

 Effects much smaller than current statistical uncertainty, but maybe large for future analyses

Mark Scott, NuInt15, Osaka

What about near detectors?

- Can't near detectors precisely measure the expected event rate?
 - Only if they see the same flux as the far detector
- We study neutrino oscillations near and far detector fluxes are different

- Nuclear effects cause feed-down of reconstructed events into oscillation dip
- These events are hidden by flux peak at near detector

vPRISM disappearance analysis

2.5

Reconstructed E, (GeV)

Mark Scott, NuInt15, Osaka

Effect of multi-nucleon events at vPRISM

T2K analysis

- Add np-nh events (Nieves and Martini models) to T2K fake data
- Perform disappearance fit to extract θ_{23}
- Compare to result from fit to nominal fake data

20

18

16

14

12

10

8

6

2

0

Event Selection

- Same event selection as at SK:

 - **Muon-like**
 - Fully contained in fiducial volume

Record the off-axis angle of the interaction, using the reconstructed lacksquarevertex position

Muon Cosθ_{beam}

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1₀

0

Flux systematics

- Flux uncertainty ~7% at oscillation dip
- Largely driven by proton beam and horn current uncertainties
 - Can be constrained by better beamline measurements

Multi-Nucleon example

• Add multi-nucleon events to the nominal MC to make fake data

See vPRISM prediction still reproduces oscillated SK spectrum when multi-nucleon events are present

Mark Scott, NuInt15, Osaka

Motivation for Gaussian Beams

• The modelling of multi-nucleon reactions, pion absorption, the nuclear initial state, etc., introduce uncertainties on:

- The absolute normalization of the cross section for CC events with only visible leptons
- The relationship between the lepton (or other final state) kinematics and the neutrino energy (important for oscillation measurements)
- Measuring the effect of nuclear effects on the final state kinematics is challenging in a conventional beams due to the width of the neutrino spectrum
- Ideally, a monochromatic neutrino beam would allow one to study how nuclear effects contribute to the final state particle distributions
- We can make "mono-chromatic" neutrino beams in nuPRISM

Martini et. al. Phys.Rev. D87 (2013) 013009

Mono-chromatic Beams with NuPRISM

• Using the linear combination method, we can produce Gaussian beams with widths significantly less than an off-axis spectrum peaked at the same energy

$$G(E_{\nu};\mu,\sigma) = \sum_{i=1}^{\# \text{ of Off-axis bins}} c_i \varphi_i(E_{\nu})$$

- Here the c_i are chose to give the desired mean μ and width σ of the Gaussian
- In practice, the range of μ that can be achieved is limited by the range of peak energies in the off-axis fluxes that nuPRISM observed, ~0.4-1.2 GeV
- The width of the mono-chromatic beam, σ_{i} is limited by the level of statistical and systematic error that can be propagated in the linear combination