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LBNE

Discovering leptonic
CP violation

● Hyper-K designed to measure CP violation

● Require 3% total uncertainty on neutrino events, 6% on anti-neutrino

● Experiment will be systematics limited!

Hyper-K

Hyper-K experiment proposal to 
J-PARC PAC http://j-

parc.jp/researcher/Hadron/en/pac_1
405/pdf/P58_2014_2.pdf

LBNE Collaboration, 
http://arxiv.org/abs/1307.7335

Assume 3% 
uncertainty
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Systematics at T2K
● Near detectors essential – 

24% → 3%

● 5% independent cross 
section uncertainty:

– Carbon → Oxygen 
extrapolation

– No sample to 
constrain some 
interaction modes

● Fundamentally limited by

– Low Oxygen/Carbon ratio

– Insensitive to far detector backgrounds

– Low reconstruction efficiency for particles perpendicular to 
beam

K. Abe et al. (T2K Collaboration) Phys. Rev. D 91, 072010
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An intermediate detector
● Large (kiloton scale) water Cherenkov (WC) detector 

1-2 km from beam target

– Water target

– 4π coverage

– Same signal and background modes as far 
detector

– Smaller near→far extrapolation systematic than 
T2K near detector 

TITUS  
- 2km

NuPRISM 
- 1km
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TITUS
● Tokai Intermediate Tank to measure the Unoscillated Spectrum

● 2km from beam target

● Cylindrical WC with long axis parallel to beam

● PMTs interspersed with large area picosecond photo-detectors 
(LAPPDs) if available

● Magnetised muon range detector (MRD)

● 0.1% Gadolinium loaded water

ν beam
MRDs
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Detector acceptance

● Muon neutrino selection efficiency at TITUS for two orientations of 
detector

– Vertical detector cannot reconstruct high momentum muons
– Loses some of the flux ~ cos(θ) = 1

● Parallel orientation - 18% of muons escape tank
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Magnetised Muon Range
Detector

● 1.5T magnetised iron tracking 
detector

● Iron interleaved with air 
gaps and scintillator 

● Measure lepton charge

– 90% to 95% efficient for 
muons with momentum 
from 0.5 to 2 GeV

● Complements Gd

● Side magnetised MRD – sample high Q2 region
● Proof of principle: Baby-MIND detector (University of 

Geneva)
● Will be used for Wagasci experiment at J-PARC

● Use data to optimise design for T2HK
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Gadolinium doping

● Neutrons capture on Gd
— 49,000b capture cross section

— 8 MeV gamma cascade, 4-5 MeV 
visible

— 0.1% doping → 90% neutrons 
capture on Gd

● Tag presence of neutron in final state – statistically separate neutrino 
CCQE interactions from others

— ν
μ
 CCQE: ν

μ
 + n → μ- + p 0 neutrons

— ν
μ
 CCQE: ν

μ
 + p → μ+ + n 1 neutron

— CCnQE backgrounds often produce neutrons

● Can be used by both TITUS and NuPRISM – studied at TITUS so far
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Gadolinium doping

● Neutrino energy resolution assuming CCQE kinematics in TITUS

— 0 neutrons → higher CCQE purity

— Improved energy resolution

— Also improves anti-neutrino selection

● If NEUT model is correct, combination of MRD + Gd gives 96% pure ν
μ
 

and ν
μ
 samples at T2HK neutrino flux peak

0 neutrons ≥ 1 neutrons
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TITUS oscillation study
● Markov Chain MC analysis

– 6% flux uncertainty, 100% correlated between TITUS and HK, 60% 
correlated between neutrino (FHC) and anti-neutrino (RHC) beams

– Using T2K interaction model uncertainties
– 10% neutron tag efficiency uncertainty
– No near detector constraint

● Fit single ring, muon-like and electron-like samples in FHC and RHC 
beam

● Equal split of POT between
FHC and RHC beams

● Note, this is best case scenario: 

– Effect of Gd on event reconstruction not included – assume current 
SK selection efficiency at HK

– Assumes nucleon final states predicted by NEUT are correct 
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δ
CP 

Precision

HK Only – No near detectorHK Only – No near detector
HK + TITUS no n-taggingHK + TITUS no n-tagging
HK + TITUS, with n-taggingHK + TITUS, with n-tagging
HK + TITUS (stat only)HK + TITUS (stat only)

● Measurement precision at 
δ

CP 
= 0

● No constraint from 
ND280

● NEUT nuclear model
● SK selection efficiencies

● Binary neutron tag in near 
and far detectors - 17% 
improvement in precision

● Need to understand hadronic side of interactions to achieve this:

– Predictions for hadronic side of interaction
– Improved FSI models
– Measurements at dedicated experiments 
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NuPRISM
● WC detector spanning 1° – 4° from the neutrino beam 

axis
● 52.5m tall if 1km from neutrino production target

● Instrument movable cylinder:
● Inner Detector (ID): 6 or 8m diameter, 10m tall
● Outer Detector (OD): 10m diameter, 14m tall

● OD surrounded by scintillator panels

● All studies assume 2.2e21 POT exposure (0.5 * T2K)

OD: 20” 
PMTs

ID: 8” or 5” 
PMTs
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ν beam

NuPRISM concept
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ν beam

1°

2.5°

4°

NuPRISM concept
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ν beam

1°

2.5°

4°

NuPRISM concept
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ν beam

1°

2.5°

4° νPRISM

NuPRISM concept
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ν beam
νPRISMMuon p-θ

NuPRISM concept
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ν beam
νPRISMMuon p-θ

-0.8

+1.0

+0.2

Take linear 
combinations

NuPRISM concept
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ν beam
νPRISMMuon p-θ

-0.8

+1.0

+0.2

Take linear 
combinations

NuPRISM concept
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ν beam
νPRISMMuon p-θ

Or take different 
combinations

-0.8

+1.0

+0.2

● Recreate oscillated neutrino flux at HK 
using near detector

● Directly measure muon p-θ for given 
value of oscillation parameters

ν Oscillation with NuPRISM
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ν beam
νPRISMMuon p-θ

+1.0

-0.5

-0.2

Mono-energetic beams

Or take different 
combinations
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ν beam
νPRISMMuon p-θ

Take linear 
combinations

+1.0

-0.5

-0.2

Muon p-θ for a 
700 MeV 

monochromatic 
neutrino beam

● Using 30 slices of 
νPRISM

● Gaussian neutrino 
flux

● Centred at 700 MeV, 
10% width

Mono-energetic beams
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Mono-energetic beams
in practice

● Gaussian neutrino beams with neutrino energy from 400 MeV→1200 MeV

– Determined by off-axis angular span of detector

● Full T2K flux error shown

● High energy tail almost completely cancelled
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● Provides more information on neutrino interactions
● Clear separation between quasi-elastic (QE) and non-QE events
● Measure quatities of interest (neutron multiplicities, cross sections):

– As function of true neutrino energy
– In same detector → highly correlated flux and detector systematics 

How can we use them?
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● Provides more information on neutrino interactions
● Clear separation between quasi-elastic (QE) and non-QE events
● Measure quatities of interest (neutron multiplicities, cross sections):

– As function of true neutrino energy
– In same detector → highly correlated flux and detector systematics

– Can also calculate Q2 or ω

How can we use them?
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Short baseline oscillations
● NuPRISM (TITUS) – same L/E range as LSND and MiniBooNE sterile 

results

● Neutrino flux variation across NuPRISM provides unique capabilities

● Directly probe 
oscillation curve

● Constrain 
backgrounds

– Energy 
dependence

– Direct 
measurements

J. Formaggio 
and G. Zeller, 
arXiv:1305.7513

http://arxiv.org/abs/1305.7513
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Signal and background
● Search for ν

e
 appearance using ν

μ
 events to 

constrain flux

● Full T2K flux and cross section uncertainties 
included

● On-axis (top)

– High ν
μ
 contamination

– Broad signal distribution

● Off-axis (bottom)

– Very little ν
μ
 contamination

– Signal peaked at low reconstructed 
energy

Points = Appearance signal
Red = Intrinsic ν

e
 bkgd

Blue = ν
μ
 bkgd
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Sterile sensitivity

Nominal
Reduce NCπ0 
bkg by 30%

● Excludes entire LSND allowed region at 90%, most of it at 5σ
● Expect results to improve:

– Full reconstruction and selection
– Direct constraint of backgrounds
– Include T2K near detector
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Summary
● Experiments becoming systematics limited

● T2K experience has shown intermediate detector must have:

● Same nuclear target 

● Same acceptance

● Same signal + background

– Kiloton scale WC detector 1-2km from neutrino production target

 
● Two proposals – TITUS and NuPRISM

● TITUS – 2km from target

– Novel MRD  + Gd increase acceptance and sign-select lepton
● NuPRISM – 1km from target, large off-axis angle coverage

– Unique probe of cross-sections and sterile neutrinos
– Oscillation analyses largely independent of interaction model
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Backup slides
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T2K multi-nucleon study
● MC-based analysis using full detector simulation, full systematics etc.
● Three fake datasets

● Nominal NEUT MC
● NEUT + meson exchange current (MEC) events from Nieves' model - 

Phys. Rev. C, 83:045501, Apr 2011 

● NEUT + MEC events based on Martini's model -                                         
 Phys. Rev. C, 81:045502, Apr 2010

● Perform disappearance fit to extract θ
23 

in each case and compare

● Both models give ~3.5% RMS in sin2 θ
23

,
 
Martini model introduces ~3% bias

● Effects much smaller than current statistical uncertainty, but maybe large for 
future analyses
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What about near detectors?
● Can't near detectors precisely measure the expected event rate?

● Only if they see the same flux as the far detector

● We study neutrino oscillations – near and far detector fluxes are 
different

● Nuclear effects cause feed-down of reconstructed events into 
oscillation dip

● These events are hidden by flux peak at near detector
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νPRISM disappearance
analysis

● Full analysis using νPRISM as near detector 
for T2K

● Take into account:
● Statistical error from linear combinations

● Neutrino beam uncertainties – direction, 
flux etc.

● Interaction model uncertainties

Total uncertainty 
on #events at SK

Uncertainty 
correlation matrix

Predict SK events 
using νPRISM data
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Effect of multi-nucleon
events at νPRISMT2K analysis

● Add np-nh events (Nieves and Martini 
models) to T2K fake data

● Perform disappearance fit to extract θ
23

● Compare to result from fit to nominal 
fake data
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● Add np-nh events (Nieves and Martini 
models) to T2K fake data

● Perform disappearance fit to extract θ
23

● Compare to result from fit to nominal 
fake data

T2K analysis

● Bias and RMS greatly 
reduced

● νPRISM analysis largely 
independent of cross 
section model

νPRISM 
analysis

Martini Model
Bias < 0.1%
RMS = 1.2%

Nieves Model
Bias < 0.1%
RMS = 1.1% 

Effect of multi-nucleon
events at νPRISM
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Event Selection
● Same event selection as at SK:

● Single ring

● Muon-like

● Fully contained in fiducial volume

● Record the off-axis angle of the interaction, using the reconstructed 
vertex position

1° off-axis

4° off-axis
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Flux systematics
● Flux uncertainty ~7% at oscillation dip

● Largely driven by proton beam and horn current uncertainties

– Can be constrained by better beamline measurements
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Multi-Nucleon example
● Add multi-nucleon events to the nominal MC to make fake data

● See νPRISM prediction still reproduces oscillated SK spectrum when 
multi-nucleon events are present
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Motivation for Gaussian Beams
●  The modelling of multi-nucleon reactions, pion absorption, the nuclear initial 
state, etc., introduce uncertainties on:

● The absolute normalization of the cross section for CC events with only 
visible leptons

● The relationship between the lepton (or other final state) kinematics and the 
neutrino energy (important for oscillation measurements) 

●  Measuring the effect of nuclear effects on
the final state kinematics is challenging
in a conventional beams due to the width
of the neutrino spectrum

●  Ideally, a monochromatic neutrino beam
would allow one to study how nuclear
effects contribute to the final state particle
distributions

●  We can make “mono-chromatic” neutrino
beams in nuPRISM
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Mono-chromatic Beams with NuPRISM
●  Using the linear combination method, we can produce Gaussian beams with 
widths significantly less than an off-axis spectrum peaked at the same energy

●  Here the c
i
 are chose to give the desired mean μ and width σ of the Gaussian

●  In practice, the range of μ that can be achieved is limited by the range of peak 
energies in the off-axis fluxes that nuPRISM observed, ~0.4-1.2 GeV

●  The width of the mono-chromatic beam, σ, is limited by the level of statistical and 
systematic error that can be propagated in the linear combination 

G (E ν ;μ ,σ)= ∑
i=1

# of Off-axis bins

ciϕi (E ν)
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