Summary of the Flux Session

M. Friend (for the NuINT2015 Flux Session Conveners)

KEK

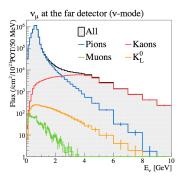
October 30, 2015

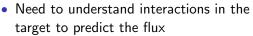
Flux is Important!

• You can't make a neutrino measurement without a neutrino flux

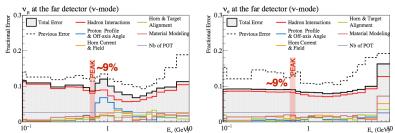
Flux is Important!

- · You can't make a neutrino measurement without a neutrino flux
- You can't make a precise neutrino cross section measurement without small neutrino flux errors

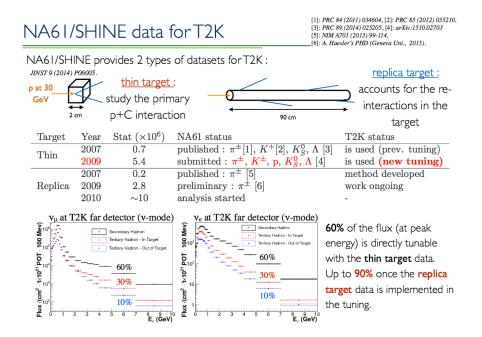

Flux is Important!

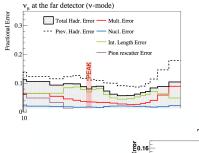

- · You can't make a neutrino measurement without a neutrino flux
- You can't make a precise neutrino cross section measurement without small neutrino flux errors
 - $\bullet \ \rightarrow \mathsf{Flux} \text{ is very important}$

Flux Session Outline

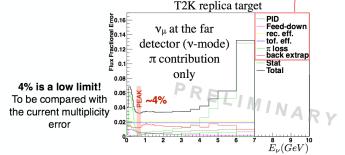

- We heard 5 talks during the flux session:
 - Recent Developments on T2K Flux and Flux Errors (L. Zambelli)
 - NuMI Flux and Flux Errors (T. Golan)
 - Hadron Production Experiments Review (A. Brvar)
 - Constraining Accelerator Flux with Muon Monitors (J. Lopez)
 - Atmospheric Neutrino Flux Calculations (M. Honda)

T2K Fluxes and Flux Uncertainties

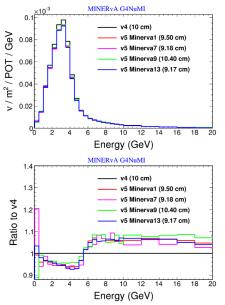



- Largest T2K flux errors come from hadron production uncertainties – constrain with external hadron production data
- Second largest T2K flux error comes from off-axis angle – error can be reduced with improved use of on-axis near detector data

4 / 20

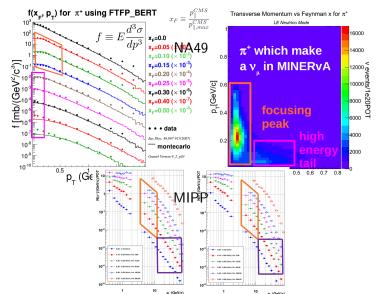


Improvement of T2K Flux Uncertainties w/ Replica Target Data



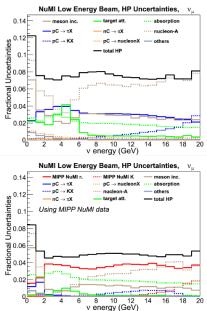
- Uncertainties on the T2K flux can be reduced with T2K replica target data (now under analysis)
- Multiple methods being considered to incorporate replica target data in T2K flux estimation

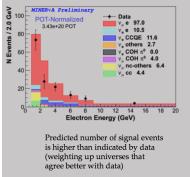
NA61 related errors


NUMI Flux Update – Geometric Update

Heard about major updates to NUMI flux estimation for MINERvA

- Changes to geometry inputs
 - Horn cooling water has major impact on predicted flux
- Inclusion of new external hadron production data
 - NA49
 - MIPP

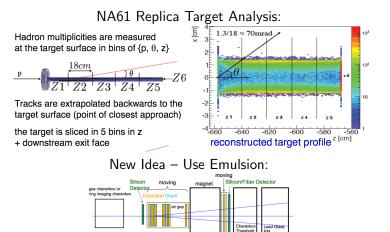

NUMI Flux Update – External Hadron Production Constraints


8 / 20

NUMI Flux Update - Flux Errors Reduced

 Flux errors reduced substantially by using this new hadron production data

NUMI Flux – Interesting New Ways to Constrain the Flux


- Electroweak theory predicts precisely cross section for neutrino-electron scattering
- Experimental signature is a very forward single electron in the finale state

- ν -e scattering (which has a very well-known cross section) to constrain the flux
- Use low ν (energy transfer) CC events
 - Cross section looks like: $\frac{d\sigma}{d\nu} = A(1 + \frac{B}{A}\frac{\nu}{E} \frac{C}{A}\frac{\nu^2}{2E^2})$ higher order terms cancel at $\nu/E \to 0$
 - Constrain flux shape (w/ normalization A)

Hadron Production Measurements

- Many types of dedicated hadron production experiments
 - NA61/SHINE, NA49, MIPP, HARP & CERN-PS214, etc
 - · For conventional, non-conventional beams, atmospheric, MC inputs
 - T2K replica target analysis by NA61/SHINE is currently under way

NA61 for FNAL v beams (USNA61)

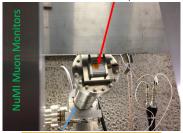
Sandro's Observations on Hadron

Production Measurements

- Hadroproduction measurements require
 - Large acceptance detectors
 - Excellent PID over whole kinematical range
 - Good vertexing (replica targets!)
 - Large statistics
 - Different nuclear targets to study various particle production effects
- None of the existing hadroproduction models describes satisfactorily the ensemble of NA61 data (same for NA49, MIPP ...)!
- Systematic uncertainties due to small contributions from various sources
 - There is not a particular error dominating over others \to Beginning to be true for full beam flux errors as well?
- Some kinematical regions still dominated by statistical uncertainties
- To improve on existing results:
 - Increase statistics by a factor of 10
 - Better understanding of interaction and production cross sections
 - Forward acceptance
 - Vertexing (replica targets)

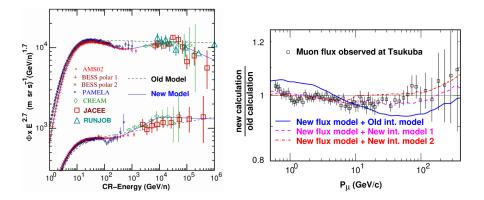
Constraining the Flux w/ Muon Monitors CNGS:

T2K:


Silicon PIN Photodiodes

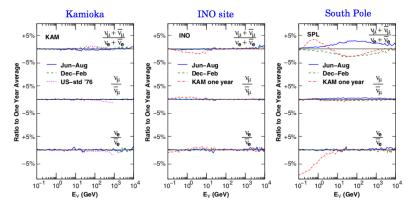
lon Chambers

New Ideas for LBNF/DUNE:

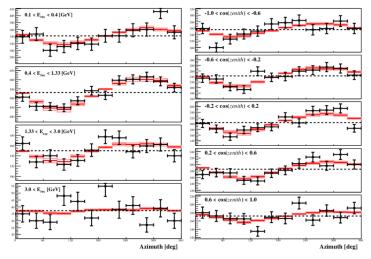

Constraining the Flux w/ Muon Monitors

Comment from Megan:

- Need to start seriously thinking how we can use this kind of measurement to constrain the flux/as an input into flux simulation
 - Does it actually add a useful constraint?
 - T2K off-axis angle, beam position constraint
 - Difficulties?
 - Beam dump material, backgrounds (delta production), etc


Atmospheric Neutrino Flux

Heard about update to muon calibration of hadronic interaction model going into atmospheric flux calculation to include AMS02 and BESS-polar data in model constraint


Atmospheric Neutrino Flux – Seasonal Variation

New calculations including seasonal variations in atmospheric pressure

Atmospheric Neutrino Flux – SK Data-MC Comparison

Observed Azimuthal Variation of v_e flux (from PHD thesis of E.Richard)

Energy Binned All Azimuth angles

Zenith Angle Binned All Energies

Comments from Mike (I guess everyone can agree..)

- We need to worry about flux measurements for future experiments (DUNE, HK) now and not later
 - If (since) dedicated experiments are required and take a long time to set up/analyze, need to work on this NOW
- Need redundant flux measurements using different methods as much as possible
 - Now there are discrepancies that we need to understand for next generation experiments
 - Let's take as much data as possible to understand the flux

Some Things to Think About for Fluxes

- How precisely can we predict the flux?
 - New ideas for hadron production measurements? How precise can these get?
 - What should we do when systematics come from a variety of small errors rather than one dominant one?
 - Possible to achieve a precision good enough to check well-known cross sections (such as ν -e scattering)?
- Other novel ways to constrain fluxes?
 - Existing measurements/monitors can be used in new ways?