PROTON DECAY SYSTEMATICS IN LONG BASE-LINE EXPERIMENTS

JAREK NOWAK

LANCASTER UNIVERSITY NUINT15, OSAKA, JAPAN

MOTIVATIONS

- Proton decay into particles with momenta similar to those produced in few GeV neutrino interactions.
- Most protons in the experiment are inside nuclei.
- Atmospheric neutrinos are the main background for underground detectors (SK/HK/DUNE).

- Here are my personal opinions and not official statements from any of the future long base-line experiments (although I am members of those experiments)
- Many thanks for materials to Ed Kearns, Jen Raff and John Urheim

PROTON DECAY

- In the Standard Model Baryon Number is conserved → several reasons to belief that the SM is a "low energy" approximation of a larger symmetry group (Grand Unified Theories).
- One of the extension of the SM is to assume that SU(3)xSU2)xU(1) is a part of SU(5)
 - ⇒ Single coupling constant
 - ⇒ New gauge bosons (X, Y) with new interactions leading to proton decay
 - ⇒ However SU(5) is not a good candidate as it also predicts massless neutrinos, magnetic monopoles and values of the weak mixing angle (but not consistent with experiments)

COUPLINGS UNIFICATION

SU(5) Model

SUSY Models

 $\tau(e^+\pi^0) = 4.5 \times 10^{29 \pm 1.7}$ years (predicted) $\tau(e^+\pi^0) > 5.5 \times 10^{32}$ years (IMB/1990) $\tau(e^+\pi^0) \approx 10^{35-38}$ years $\tau(vK^+) \approx 10^{29-35}$ years

NUCLEON DECAY LIMITS

PROTON DECAY CHANNELS

- There are about 100 excusive nucleon day modes
 - B-L conserving, B+L conserving, 3-body final state, neutronantineutrino oscillation ($\Delta B=2$)
 - Beyond Standard Models predictions for proton decay channels can differ by a few orders of magnitude -> good way to test the models.
 - Some channels may not be allowed in given group of theories

6

Two benchmark modes

 $e^+\pi^0$ Gauge mediated

 $\overline{oldsymbol{
u}}K^+$ SUSY models

SUPER-KAMIOKANDE

 If there is a limit for the given proton decay channel it belongs to S-K, but the most important is p-> $e^+\pi^0$

- Fully contained •
- Fiducial volume
- 2 or 3 rings •
- All rings are EM showers
- π⁰ mass 85-185 MeV/c2
- No µ-decay electrons
- Mass range 800-1050 MeV/c2 •
- p_{net}< 250 MeV/c
- tight cut: p_{net} < 100 MeV/c

Ed Kearns

1000

1500

NUCLEAR PHYSICS

Hole	Residual	States	(k)	E_{γ}	E_p	E_n	$\boldsymbol{B}(k)$
$(p_{1/2})_p^{-1}$	g.s.	$\frac{1}{2}$ -	¹⁵ N	0	0	0	0.25
$(p_{3/2})_p^{-1}$	6.32	$\frac{3}{2}$ -	¹⁵ N	6.32	0	0	0.41
	9.93	$\frac{3}{2}$ -	¹⁵ N	9.93	ogam	imas ₀	0.03
	10.70	$\frac{3}{2}$ -	¹⁵ N	0	0.5	0	0.03
$(s_{1/2})_p^{-1}$	g.s.	1+	¹⁴ N	0	0	~20	0.02
p	7.03	2+	¹⁴ N	7.03	0	~13	0.02
	g.s.	$\frac{1}{2}$ -	¹³ C	0	1.6	~11	0.01
	g.s.	Õ+	^{14}C	0	~21	0	0.02
	7.01	2+	¹⁴ C	7.01	~14	0	0.02
	g.s.	$\frac{1}{2}$ -	¹³ C	0	~11	~2	0.03
$(j)_{p}^{-1}$	others	-	many states	$\leq 3-4$			0.16

8

MAIN (EFFICIENCY) UNCERTAINTIES

- Nuclear effects meson (π , η , ω) nuclear effects affect the detection efficiency. The biggest error source
- π nuclear effect the systematics obtained from comparison between two models (as there is no suitable data). Detection efficiency depends on the probability for the π to escape with out any scattering.
- Fraction of NN-corelated decays -10% of the decays are assumed to come from nucleon correlated to another nucleon (3 body decay). That leads to lower detection efficiency.
- Fermi motion modeling of the nucleon momenta

Uncertainties for detection efficiency Phys.RevD85,112001

Mode	Meson nuclear effect	Hadron propagation in water	N-N correlated decay	Fermi momentum	Detector performances	Total
$p \rightarrow e^+ \pi^0$	15%		7%	8%	4%	19%
$p \rightarrow \mu^+ \pi^0$	15%		7%	8%	4%	19%
· · · ·			0			

BACKGROUND: ATMOSPHERIC NEUTRINOS

- Modelling of the neutrino interactions and intranuclear pion scattering are crucial for background estimation.
- The background rate uncertainty typically 40%-60%, dominated by the hadronic interaction uncertainty.

MAIN (BACKGROUND) UNCERTAINTIES

• The background comes from atmospheric neutrinos interactions.

Uncertainties for neutrino interaction background

Mode	Neutrino flux	Neutrino cross section	Pion nuclear effect	Hadron propagation in water	Detector performances	Total
$p \rightarrow e^+ \pi^0$	8%	8%	8%	36%	22%	44%
$p \rightarrow \mu^+ \pi^0$	8%	8%			43%	58%

Background events

Mode	$p \rightarrow e^+ \pi^0$	$N \rightarrow l^+ \pi$	$p \rightarrow l^+ \eta$	$p \rightarrow l^+ \omega$	$N \rightarrow l^+ \rho$
CCQE	28%	21%	5%	4%	9%
CC 1- π	32%	51%	20%	25%	45%
CC multi- π	19%	14%	24%	29%	14%
CC others	2%	6%	13%	7%	4%
NC	19%	9%	37%	35%	28%

Phys.RevD85,112001

ATMOSPHERIC BACKGROUND MC $p \rightarrow e^+ \pi^0$ SIGNAL MC

Signal Efficiency (%)	SK-I	SK-II	SK-III	SK-IV w. n cap.
$100 < p_{net} < 200 \text{ MeV}/c$	20.4 ± 3.1	20.2 ± 3.1	20.5 ± 3.2	19.4 ± 1.2
$p_{net} < 100 \text{ MeV}/c$	18.8 ± 0.9	18.3 ± 1.0	19.6 ± 1.3	18.7 ± 1.2
Background (evts)	SK-I	SK-II	SK-III	SK-IV w. n cap.
Background (evts) 100 < p _{net} < 200 MeV/c	SK-I 0.22 ± 0.06	$\frac{\text{SK-II}}{0.12 \pm 0.04}$	$\frac{\text{SK-III}}{0.06 \pm 0.02}$	SK-IV w. n cap. 0.15 ± 0.05

Monte Carlo estimates. Background rate also measured using K2K 1KT near detector.

Ed Kearns, DPF2015

 $p \rightarrow e^+ \pi^0$

SUPER-K Data 306 kt y

Zero candidate events

Kaon is below Cherenkov threshold. Search for Kaon decay at rest.

γ-tag plus $\pi^+\pi^0$	SK1	(20% coverage) SK2	SK3	(new electronics) SK4 \rightarrow w. n-cap
Efficiency	15.7 %	13.0 %	15.6 %	18.9 % → 17.5 %
Background rate (ev/100 kty)	0.28	0.63	0.38	0.4 → 0.19 %

No candidates, 306 kton yr (SK 1+2+3+4 w. n-cap):

SK preliminary

$p \rightarrow \overline{\nu}K^+$

A GOLDEN CHANNEL FOR LAr DETECTORS

- Two-body decay: for free protons, K⁺ momentum 340 MeV
- Below inelastic collision threshold → no absorption of K⁺ within Argon nucleus → K⁺ emerges intact in ~97% of p → K⁺v decays.
- However, all decays are inside the nucleus. No free protons as in the case od SK.

Fig. 1. Momentum distribution of kaons produced in the $p \rightarrow \bar{\nu}K^+$ decay inside the argon nucleus predicted by different approaches. Left: Calculations for the spectral function of argon (hatched) compared to the local Fermi gas model from GEANT4 without the intranuclear cascade (plain histogram). Right: GEANT4 with (hatched) and without (plain histogram) the cascade.

from Stefans & Ankowski, ArXiv:0811.1892 [nucl-th], 2009

- K⁺ momentum 340 MeV \rightarrow range ~14cm
 - distinctive dE/dx signatures already seen in **ICARUS** and ArgoNeuT
 - Will also be studied in detail with planned LArTPC R&D efforts (protoDUNE, WA105)

of hit

2

0

0

From LArSoft Simulation: K/p dE/dx for muons in ArgoNeuT Data separation histogram2 Likelihood Plot for Protons vs Kaons dEdx Coll (MeV/cm) dEdx Coll 768435 Entries 8536 Entries -10.37 2.232 900F Mean Mean 2.853 RMS 40000 RMS 0.6793 γ^2 / ndf Underflow 1985 / 64 800 Weight Overflow 35000 0.07164 ± 0.00038 MPV 1.939 ± 0.001 700 3.88e+04 ± 4.57e+01 Area 30000 0.2838 ± 0.0006 sigma 600 25000 <dE/dx>=2.2 MeV/cm 500 20000 dE/dx_{m.p}=1.9 MeV/cm 400 15000 (Landau-Gauss fit) 300 10000 hits due to δ rays not included 5000 200

dE/dx Collection(MeV/cm)

16

100

-30

-20

-10

10

0

20

30

K⁺ decay at rest: Simple topologies !

- μ + ν (63.6% BR): monochromatic μ : p_{μ} = 236 MeV
 - Minimum-ionizing track, momentum by range/multiple scattering/energy deposition
 - Note: muon from π + decay-at-rest has p_{μ} = 30 MeV
 - Followed by decay electron.
- π + π^0 (20.7% BR): fully reconstructable final state
- 3π (7.4% BR): fully reconstructable final states
- $\pi^0 l^+ \nu$ (8.3% BR): kinematically constrained final states

PROTON DECAY CHANNELS WITH KAONS

ICARUS T600 event from Antonello et al. Adv. High Energy Phys. (2013) 260820

BACKGROUND AND EFFICIENCIES

		Super-K Water Ch.		LAr (generic)	
	Mode	Efficiency	BG Rate (/Mt y)	Efficiency	BG Rate (/Mt y)
- 1	e ⁺ π ⁰	45%	2	45%	1
B-L	ν Κ+	16%	7	97%	1
	μ + Κ ⁰	10%	5-10	47%	<2
R+I	μ ⁻ π+ K+	?	?	97%	1
	e⁻ K+	10%	3	96%	<2
∆B=2	n nbar	12%	260	?	?
		Rough and u SK efficiency	nofficial & BG - ETK	A. Buen hep-ph/	o et al. /0701101

Estimate for water Cherenkov: Kearns (Snowmass, 2013). For LAr: LBNE Collaboration, arXiv:1307.7335v3 based on Bueno et al. JHEP04 (2007) 041. Several decay modes with high efficiency and low background in LAr.

CURRENT RESULTS

FUTURE EXPERIMENT SENSITIVITIES

CONCLUSIONS

• So far zero proton decay events!

• Better understanding of nuclear effect is necessary.

 Nucleon decay program of the future large underground detectors will make use of the developments in the nuclear effects presented and NuInt workshops.

BACKGROUND TO $p \rightarrow K^+ \nu$ IN LAr:

"Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds"

Comprehensive study based on well tested event generators & parametrized detector response

Projected DUNE capabilities currently based on these results

	This pap	er (LAr TPC)	Super-Kamiokand	e results [5, 10]	
Decay	Efficiency	Atmospheric ν	Efficiency	Atmospheric ν	Published
mode	(%)	background	(%)	background	limit
		100 kton \times year		92 kton×year	90% C.L.
(p1) $p \rightarrow e^+ \pi^0$	45.3	0.1	40	0.2	1.6×10^{33}
(p2) $p \rightarrow \pi^+ \bar{\nu}$	41.9	78.2			
(p3) $p \rightarrow K^+ \bar{\nu}$	96.8	0.1	8.6 (prompt- γ)	0.7	2.3×10^{33}
			6.0 $(K^+ \to \pi^+ \pi^0)$	0.6	
(p4) $p \rightarrow \mu^+ \pi^0$	44.8	0.8	32	0.2	
(p5) $p \rightarrow \mu^+ K^0$	46.7	< 0.2	5.4 $(K_S^0 \rightarrow \pi^0 \pi^0)$	0.4	
			7.0 $(K_S^0 \rightarrow \pi^+\pi^- \text{ method } 1)$	3.2	1.3×10^{33}
			2.8 $(K_S^0 \rightarrow \pi^+\pi^- \text{ method } 2)$	0.3	
(p6) $p \rightarrow e^+ K^0$	47.0	< 0.2	9.2 $(K_S^0 \to \pi^0 \pi^0)$	1.1	1.0×10^{33}
			7.9 $(K_S^0 \rightarrow \pi^+ \pi^- \text{ method } 1)$	3.6	
			1.3 $(K_S^0 \rightarrow \pi^+ \pi^- \text{ method } 2)$	0.04	
(p7) $p \rightarrow e^+ \gamma$	98.0	< 0.2	73	0.1	
(p8) $p \rightarrow \mu^+ \gamma$	98.0	< 0.2	51	0.2	
(p9) $p \rightarrow \mu^- \pi^+ K^+$	97.6	0.1			
(p10) $p \rightarrow e^+ \pi^+ \pi^-$	18.6	2.5			
(n1) $n \rightarrow \pi^0 \bar{\nu}$	45.1	47.4			
(n2) $n \rightarrow e^- K^+$	96.0	< 0.2			
(n3) $n \rightarrow e^+ \pi^-$	44.4	0.8	Rueno et al IHF	P 04 (200)7) 04 [.]
(n4) $n \rightarrow \mu^- \pi^+$	44.8	2.6	Bueno et al., Jill		

the IMB experiment.					
Nuclear effect	Our MC	IMB			
No interaction	44%	54%			
Absorption	22%	22%			
Charge exchange	15%	10%			
Scattered	19%	14%			

TABLE VI. Fraction of the final states of π^0 from the proton decay of $p \rightarrow e^+ \pi^0$ in ¹⁶O compared with the simulation used in the IMB experiment.