

UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

$\begin{array}{c} \mathsf{CCO}{\pi} \text{ CROSS SECTION MEASUREMENTS} \\ \texttt{AT THE T2K NEAR DETECTOR} \end{array}$

Asmita Redij University of Bern for the T2K collaboration

10th Nulnt workshop, 16-21 November 2015, Osaka University Suita Campus

Tokai 2 Kamioka

Long-baseline neutrino oscillation experiment

2015 Nobel Prize

Nulnt 2015

T2K: Oscillation physics

- Appearance: $\nu_{\mu} \rightarrow \nu_{e}$ First evidence of ν_{e} appearance from ν_{μ} , followed by measurement with 7.3 σ significance.
- Disappearance: ν_μ -> ν_μ
 Precise measurement of atm. neutrino parameters.
 World's most precise measurement of sin²θ₂₃.
- Antineutrino mode: $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}} \& \overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ Started data taking in anti-neutrino mode and first measurements presented.
- CP violation in neutrino sector: δ_{CP} Along with constraints from reactor experiments, exclude region of $\delta_{CP} = 0$ with 90% C.L. PRL 112, 061802 (2014) PRL 112, 181801 (2014) 17/11/2015 Nulnt 2015 3

T2K @ Nulnt

Oscillation physics relies on the understanding of neutrino interactions.

At low energies CCQE is the dominant signal.

Experimentally, an event with a muon and no pion is CCQE

$$E_{\nu}^{QE} = \frac{m_{p}^{2} - (m_{n})^{2} - m_{\mu}^{2} + 2(m_{n})E_{\mu}}{2(m_{n} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Easy...

р

^{17/11/2015}

T2K @ NuInt

... but it isn't that simple.

In the presence of nuclear effects, other interactions contribute to this signal definition.

We now call it, $CC0\pi =$ CCQE (with RPA) $+ 2p2h + CC1\pi$ -abs

Need new models and model-independent $CC0\pi$ measurements to test them.

In this talk: CC0π measurements @ T2K near detectors

Nulnt 2015

Near Detector

Off Axis: constrain flux and cross section & v_e contamination Fine-grained detector (FGD) : CH and H₂O Time projection chamber (TPC): good tracking efficiency + resolution + particle identification π^0 detector (POD): scintillator CH with H₂O Electromagnetic calorimeter (ECAL) : Pb Side muon range detector (SMRD) Other targets: Ar, Cu, Zn Placed in 0.2 Tesla magnetic field

On Axis: to measure beam direction, beam profile, beam stability and rates INGRID: 16 modules, each with alternating scintillator (CH) & Iron (Fe) plates Proton Module: only scintillator (CH) plates

Flux

On-axis beam: wide energy spectrum.

Off-axis beam: narrower band, peaks at 0.6 GeV.

Cumulative Proton on Target (POT) Total: 11.04 x 10²⁰ POT Run 1 - 4 in neutrino mode : 7.00 x 10²⁰ POT Run 5 - 6 in antineutrino mode : 4.04×10^{20} POT NuInt 2015 7

Cross section measurements

T2K is producing world class measurements for a variety of neutrino interaction channels at few-GeV energies:

CC0π

On-Axis

 $\checkmark \quad \nu_{\mu}$ CCQE (C)

Off-Axis

- \checkmark ν_{μ} CCQE vs E_{ν} (C)
- $\checkmark \quad \begin{array}{l} \nu_{\mu} \ \mathsf{CC0}\pi \ \mathsf{differential} \\ \textbf{(2 methods) (C)} \\ \nu_{\mu} \ \mathsf{CC0}\pi \ \mathsf{on} \ \mathsf{H}_{2}\mathsf{O} \\ \overline{\nu_{\mu}} \ \mathsf{CC0}\pi \ \mathsf{on} \ \mathsf{C} \\ \nu_{\mu} / \ \overline{\nu_{\mu}} \ \mathsf{CC0}\pi \ \mathsf{on} \ \mathsf{C} \end{array}$
- ✓ Shown in this talk

Other

 v_{μ} and v_{e} CC inclusive C & H_2O ν_{μ} CC1 π^{+} on C & H₂O ν_{μ} CC1 π^{+} coherent on C $\overline{\nu_{\mu}}$ CC1 π^{+} on C NCE on C CC1K⁺ on C NC 1gamma on C 2p2h searches and more Green & Red => Analysis complete

Cross section measurements

T2K is producing world class measurements for a variety of neutrino interaction channels at few-GeV energies:

<u>CC0π</u>

On-Axis

 $\checkmark \quad \nu_{\mu} \text{ CCQE (C)}$

Off-Axis

- $\checkmark \nu_{\mu}$ CCQE vs E_{ν} (C)
- $\checkmark \quad \begin{array}{l} \nu_{\mu} \ \mathsf{CC0}\pi \ \mathsf{differential} \\ \textbf{(2 methods) (C)} \\ \nu_{\mu} \ \mathsf{CC0}\pi \ \mathsf{on} \ \mathsf{H}_{2}\mathsf{O} \\ \overline{\nu_{\mu}} \ \mathsf{CC0}\pi \ \mathsf{on} \ \mathsf{C} \\ \nu_{\mu} / \ \overline{\nu_{\mu}} \ \mathsf{CC0}\pi \ \mathsf{on} \ \mathsf{C} \end{array}$
- ✓ Shown in this talk

Other

 v_{μ} and v_{e} CC inclusive C & H_2O ν_{μ} CC1 π^{+} on C & H₂O ν_{μ} CC1 π^{+} coherent on C $\overline{\nu_{\mu}}$ CC1 π^{+} on C NCE on C Talk by Dr. Son Cov CC1K⁺ on C on Wednesday NC 1gamma on C 2p2h searches and more Green & Red => Analysis complete

v_{μ} CCQE model-dependent measurements

Published results

v_{μ} CCQE on carbon @ Proton Module

Measurement of CCQE on carbon per neutron.

• POT 6.042 x 10²⁰ (Run 2-4)

Detector: Proton module (target) + INGRID

Selection: Topological selection, (kinematic cut with CCQE assumption)

- 1 muon-like track
- 2 tracks, one muon-like and other proton-like sample.

Each sample further divided into:

- low energy sample
- high energy sample

ν_{μ} CCQE on carbon @ Proton Module

Measured cross section for each energy bin in each topology, using

$$\sigma_{CCQE} = \frac{N_{selected} - N_{backgrd}}{Flux.Target.\varepsilon}$$

 $\varepsilon \rightarrow Efficiency of selection$

	One-track sample	Two-track sample	
High energy region	$(12.286 \pm 0.221(stat.)+1.963-1.595(syst.)) \times 10^{-39} cm^2/neutron$	$(10.981 \pm 0.348(stat.)+1.876-1.546(syst.)) \times 10^{-39} cm^2/neutron$	
Low energy region	$(11.629 \pm 0.454(stat.)+2.377-2.030(syst.)) \times 10^{-39} cm^2/neutron$	$(8.008 \pm 0.638(stat.)+1.951-1.550(syst.)) \times 10^{-39} cm^2/neutron$	
17/11/2015 Nulpt 2015 12			

v_{μ} CCQE on carbon @ Proton Module 16×10⁻³⁹

Measured cross section for each energy bin in each topology, using

$$\sigma_{CCQE} = \frac{N_{selected} - N_{backgrd}}{Flux.Target.\varepsilon}$$

 $\varepsilon \rightarrow Efficiency of selection$

	One-track sample	Two-track sample	
High energy region	$(12.286 \pm 0.221(stat.)+1.963-1.595(syst.)) \times 10^{-39} cm^2/neutron$	$(10.981 \pm 0.348(stat.)+1.876-1.546(syst.)) \times 10^{-39} cm^2/neutron$	
Low energy region	(11.629 ± 0.454(stat.)+2.377-2.030(syst.)) × 10 ⁻³⁹ cm ² /neutron	$(8.008 \pm 0.638(stat.)+1.951-1.550(syst.)) \times 10^{-39} cm^2/neutron$	
17/11/2015 Nulnt 2015 13			

v_{μ} CCQE on carbon @ Proton Module 2 tracks sample

Measured cross section for each energy bin in each topology, using

$$\sigma_{CCQE} = \frac{N_{selected} - N_{backgrd}}{Flux.Target.\varepsilon}$$

 $\varepsilon \rightarrow Efficiency of selection$

	One-track sample	Two-track sample	
High energy region	$(12.286 \pm 0.221(stat.)+1.963-1.595(syst.)) \times 10^{-39} cm^2/neutron$	$(10.981 \pm 0.348(stat.)+1.876-1.546(syst.)) \times 10^{-39} cm^2/neutron$	
Low energy region	$(11.629 \pm 0.454(stat.)+2.377-2.030(syst.)) \times 10^{-39} cm^2/neutron$	$(8.008 \pm 0.638(stat.)+1.951-1.550(syst.)) \times 10^{-39} cm^2/neutron$	
17/11/2015 Nulpt 2015 14			

accepted by Phy.Rev. D

ν_{μ} CCQE on carbon @ FGD1

Model-dependent likelihood fit to extract flux-averaged cross section and model parameter fits

POT 2.6 x 10²⁰ (Run 1-3)

Detector: Fine-grained detector (FGD1) as target + TPC

Selection: (same as MiniBooNE)

Interaction in FGD1 with associated muon-like track in TPC2 and no pion track

- Include 2p2h interaction
- Corrected for CC1π⁺ absorption

accepted by Phy.Rev. D

ν_{μ} CCQE on carbon @ FGD1: Results

Flux-averaged cross section

Best fit M_AQE Parameters

- Energy calculated from muon kinematic with CCQE assumption
- A χ^2 test to compare the fitted result with the nominal NEUT MC (M_A = 1.21 GeV) gave a p-value of 17%.

17/11/2015

Nulnt 2015

ν_{μ} CC0 π model-independent measurements

New results

Paper in preparation

v_{μ} CC0 π on carbon @ FGD1

Model-independent measurement of $CC0\pi$ on CH as function of muon kinematics

• POT 5.73 x 10²⁰ (Run 2-4)

Detector: Fine-grained detector (FGD1) as target + TPC

Carried out two separate measurements with two different analyses and two different methods.

Selection: Both used CC0Pi sample with no pion in final state.

Analysis I : proton information included

Analysis II : no proton information used

ν_{μ} CC0 π : Selection

Analysis I: A muon track \w and \wo additional proton track. Good purity and high angle acceptance.

Background: pion production process.

Control regions are used to fit the background from the data.

ν_{μ} CC0 π : Selection

Analysis II: only muon track in TPC and no pion in final state (no proton information used).

Background: pion production process.

• Monte Carlo tuned to fits to MiniBooNE and MINERvA data.

Used limited phase space to avoid region of smaller signal to background ratio.

Likelihood fit (Analysis I)

To predict true spectrum from reconstructed spectrum

Signal events

of events in true bin

$$N_{i} = \sum_{j}^{bins \ by \ topo} \left[c_{i} \left(N_{j}^{MC \ CC0\pi} \prod_{a}^{model} w(a)_{ij}^{CC0\pi} \right) + \sum_{k}^{bkg \ reactions} N_{j}^{MC \ bkg \ k} \prod_{a}^{model} w(a)_{ij}^{k} \right] t_{ij}^{det} r_{j}^{det}$$

bkgd events

in reco hin

X

Simultaneously fit four topologies and two control samples.

Extract flux integrated cross section

MC based

reco -> true

Likelihood fit (Analysis I)

To predict true spectrum from reconstructed spectrum

of events
in true bin

$$N_{i} = \sum_{j}^{bins \ by \ topo} \left[c_{i} \left(N_{j}^{MC \ CC0\pi} \prod_{a}^{model} w(a)_{ij}^{CC0\pi} \right) + \sum_{k}^{bkg \ reactions} N_{j}^{MC \ bkg \ k} \prod_{a}^{model} w(a)_{ij}^{k} \right] t_{ij}^{det} r_{j}^{det}$$

DATA/MC: parameter fitted

Signal events

Free nuisance parameter (theory + detector)

X

bkgd events

in reco hin

Simultaneously fit four topologies and two control samples.

Extract flux integrated cross section

MC based

reco -> true

Likelihood fit (Analysis I)

To predict true spectrum from reconstructed spectrum

of events in true bin

$$N_{i} = \sum_{j}^{bins \ by \ topo} \left[c_{i} \left(N_{j}^{MC \ CC0\pi} \prod_{a}^{model} w(a)_{ij}^{CC0\pi} \right) + \sum_{k}^{bkg \ reactions} N_{j}^{MC \ bkg \ k} \prod_{a}^{model} w(a)_{ij}^{k} \right] t_{ij}^{det} r_{j}^{det}$$

DATA/MC: parameter fitted

Signal events

in reco bin

Free nuisance parameter (theory + detector)

X

bkgd events

in reco bin

Simultaneously fit four topologies and two control samples.

$$\chi^{2} = \chi^{2}_{stat} + \chi^{2}_{syst} = \sum_{j}^{reco\,bins} 2(N_{j} - N^{obs}_{j} + N^{obs}_{j}\ln\frac{N^{obs}_{j}}{N_{j}}) + \chi^{2}_{syst}$$

Extract flux integrated cross section

$$\chi^{2}_{syst} = (\vec{r}^{det} - \vec{r}^{det}_{prior})(V^{det}_{cov})^{-1}(\vec{r}^{det} - \vec{r}^{det}_{prior}) + (\vec{a}^{theory} - \vec{a}^{theory}_{prior})(V^{theory}_{cov})^{-1}(\vec{a}^{theory} - \vec{a}^{theory}_{prior})$$

2

MC based

reco -> true

Bayesian unfolding (Analysis II)

To predict true spectrum from reconstructed spectrum
 Prediction in true bin:

Extract flux-integrated cross section from the true prediction

v_{μ} CC0 π : Uncertainty

1. Flux:

10% normalization (dominant) Constrained by NA61 and T2K beam measurements

2. Cross-section:

Used NEUT default model Constrained by fits to external data Signal systematics is important in the low-efficiency region **For Analysis I**: Background systematics is negligible.

3. Detector:

Vary detector parameters such as magnetic fields etc.

Analysis I has lower flux and cross section systematic while Analysis II had lower statistical uncertainty.

CC0 π : differential cross section

Dip seen in both analyses, not in the prediction

NEUT M_a = 1.21

GENIE M₂= 0.99

Norm

Shape

(GeV)

17/11/2015

σ(CC0π) / 100 MeV [fb]

NuInt 2015

26

CC0 π : comparing both analyses

- Results from both analyses match, despite different binning, selection and analysis methods.
- Cross check of model independence.

CC0 π : integrated cross section

Same for both the analyses

17/11/2015

Comparison with nuclear models

Lots of work within T2K to keep NEUT up to date as new models become available.

First opportunity to test these models with full detector MC simulation and systematic uncertainties.

 $CC0\pi$ measurements from T2K and other experiments are used to:

- test the theory models in the market.
- introduce new data-based models to determine unknown model uncertainty.

Comparison with nuclear models

Measurement favor presence of 2p2h interactions.

α(CCOπ) / 100 MeV [fb] α(CCOπ) / 100 MeV [fb] 0.14 0.16 0.12 0.12 0.14 0.16 0.12

0.08

0.06 0.04

0.02

NuInt 2015

Summary & Prospects

T2K continues to make world-class neutrino cross section measurements.

- Now moved to topology-based model-independent measurements.
- Measurements clearly show excess coming from nuclear effects.
- Other ongoing extensions of the presented analysis
 - Including more than two tracks sample
 - Increasing the phase space
 - Measurements on water target and ratio of neutrino/ antineutrino
 - 2p2h searches

Have an up-to-date neutrino generator and MC framework to test new models with full sys. uncertainties and to incorporate them in oscillation analysis.

Thank you

500 people, 59 institute, 11 countries

Nulnt 2015

Back up

Llewellyn Smith formula for QE scattering

 Present neutrino generators use scattering cross-section of neutrinos off the nucleon, given by the Llewellyn Smith formula / Smith Moniz (RFG).

Impulse Approximation : gauge boson is absorbed by just one nucleon

Use Fermi Gas model, free nucleon in mean field, with P (nucleon) < Fermi surface momentum</p>

$$\frac{\partial \sigma}{\partial Q^2} = \frac{M^2 G_F^2 \cos \theta_C}{8E_v^2} (A(Q^2) \pm \frac{B(Q^2)(s-u)}{M^2} + \frac{C(Q^2)(s-u)^2}{M^4})$$

 G_F is the Fermi constant, M is the average nucleon mass, θ_C is the Cabbibo angle, E is the neutrino energy, s and u are Mandelstam variables,

A, B, C are functions of Q^2 , with coefficients called form-factor.

Llewellyn Smith, C.H., 1972, Phys. Rep. C3, 261

Form Factors

- Form factors parameterize hadronic information and are measured experimentally.
 - Two vector form factors are know from electron scattering experiments.
 - Pseudo-scalar form factors contribution is negligible.
 - Only unknown is axial form factor, and is measured using neutrino scattering.
- Axial form factor in the dipole form is dependent on two parameters.
 - $F_A(0)$ is precisely known from beta decay experiment.
 - So the only parameter left was axial mass form factor $\mathbf{M}_{\mathbf{a}}$

Nominal value of $M_a = 1.02$

(from pre-MiniBooNE era, from fit to BNL, ANL, FNAL data)

BNL: Baker, PRD 23, 2499 (1981)
ANL: Miller, PRD 26, 537 (1982)
FNAL: Kitagaki, PRD 28, 436 (1983)

$$F_{A}^{dipole} = \frac{F_{A}(0)}{(1 - \frac{q^{2}}{M_{a}^{2}})^{2}}$$

Talk by T. Kikawa @NuInt 2014

CCQE at Proton Module: Selection

Talk by T. Kikawa @NuInt 2014

Opening

angle

Coplanarity/

angle

 ν_{μ}

- Coplanarity angle ٠
 - Angle between $\vec{\mu}$ and \vec{p} projected to a _ plane which is perpendicular to \vec{v} .
 - Should be around 180 deg. for CCQE.
- Opening angle
 - Angle between $\vec{\mu}$ and \vec{p} .
 - Generally large for CCQE.

Andy Furmanski @ NuFact 2015

Selection of CC0pi @ FGD1

- Data quality
- Highest momentum negative track selection
- Starts in FGD Fiducial volume
- Broken track cut
- Muon PID

Analysis I

- Proton topologies
 - Muon-only
 - Muon + TPC proton
 - Muon + FGD proton
 - TPC proton + FGD muon
- No dependence on pion rejection
- Additional high-angle tracks
- High purity

Analysis II

- Pion rejection:
 - Pion-like TPC tracks
 - Pion-like FGD-only tracks
 - Michel electron (delayed)
 - Electron-like TPC tracks (due to π^{0} decay)
- Fully proton-inclusive
- Higher efficiency