$\nu_{\rm e}$ CCQE scattering in the MINERvA experiment

Jeremy Wolcott University of Rochester (now at Tufts University)

17 November 2015 NuINT 2015 (Osaka, Japan)

)E

- Signal reaction for ν_Δ appearance experiments, but no direct measurements
 - T2K: 80% of signal
 - NOvA: 50% of signal
- Comparison to v_{μ} CCQE scattering probes nuclear physics
 - Different thresholds in Q² $(m_{\mu}/m_{e} \sim 200)$ expose different kinematic regimes

The MINERvA experiment

Signal definition

Electron neutrinos from beam muon decay. About 10% \overline{v}_{e} . MINERvA is not magnetized... so e⁺ looks like e⁻.

⇒ Choose signal to include antineutrinos: one electron or positron in final state

Signal definition

About 10% \overline{v}_{e} . MINERvA is not magnetized... so e⁺ looks like e⁻.

⇒ Choose signal to include antineutrinos: one electron or positron in final state

Choose exclusive-channel signal: CCQE

But initial- and final-state effects can cause absorption or creation of hadrons.

⇒ Choose signal to be quasielastic-like: any number of nucleons, but no other hadrons allowed in final state

Isolating v_e -like events

Event "pre-selection" (EM-enriched):

- One (or more) reconstructed track(s) (>85% of e[±] in inner detector region begin with track due to low-Z material)
- No obvious muons (never v_e):
 - No tracks exiting back of detector
 - No μ → e decay candidates ("Michel electrons")
- Cut on multivariate PID classifier combining details of energy profile

Simulated background rejected by muon cuts

J. Wolcott / Tufts U. / NuINT 2015

Isolating v_e events: Photon rejection

e±

The energy deposition pattern early in the track helps discriminate between photons (background) and electrons

Isolating v_e -like events: Photon rejection

The energy deposition pattern early in the track helps discriminate between photons (background) and electrons

Isolating v_e -like events: Photon rejection

The energy deposition pattern early in the track helps discriminate between photons (background) and electrons

Isolating v_e -like events: Quasi-elastic-like topology selection

J. Wolcott / Tufts U. / NuINT 2015

Selected sample

Constraining backgrounds

Normalizations of backgrounds are constrained using sidebands in Michel match, extra energy

Fitted scale factors (relative to GENIE predicted normalization) are minor:

Other CC v

 $CC v_{\mu} \pi^{0}$

<u>Inelastic v_{e} </u>: 0.89 ± 0.08 <u>NC & CC incoherent π^{0} </u>: 1.06 ± 0.12

v CCQE-like

Other NC π^0

J. Wolcott / Tufts U. / NuINT 2015

v + e elastic

Other

Unmodeled background: NC diffractive scattering from H

Conceptually similar to NC coherent scattering:

- Little momentum transfer to target
- Vector meson emitted in forward direction

Unique to diffractive scattering from H:

 Recoiling H nucleus (single proton) sometimes visible

Not in (default) GENIE model

Unmodeled background: NC diffractive scattering from H

J. Wolcott / Tufts U. / NuINT 2015

Unmodeled background: NC diffractive scattering from H

Observe unusually hard pion energy spectrum

Model excess using ad hoc single-particle π^o sample tuned to fit kinematics

Uncertainty summary

Systematic uncertainties and the statistics are roughly comparable

Cross-sections

Comparison to v_{μ}

When compared to prior MINERvA ν_μ CCQE measurement, ratio is consistent with GENIE prediction.

(Apparent shape is only significant at ~1σ level due to bin-to-bin correlated systematic errors with similar behavior.)

Upper bound on scale of nuclear effects when comparing v_e and v_{μ} CCQE scattering is 15-30%

Summary and outlook

- $\nu_{\rm e}$ cross sections are important both for oscillation expts. and for better understanding nuclear medium
- First $\nu_{\rm e}$ exclusive process measurement consistent with GENIE 2.6.2 at ~1\sigma
- ν_e/ν_μ ratio provides upper bound on impact of nuclear effects on $\nu_e \to \nu_\mu$ extrapolation
- Observation of unmodeled diffractive scattering process underscores need for continuing work on models for potential $\nu_{\rm e}$ background reactions
- Publications forthcoming (CCQE submitted to PRL; diffractive scattering in preparation)

Thanks for your attention!

Backup slides follow

Inputs to $v_{\mu} \rightarrow v_{e}$ oscillation measurements

 $d\sigma_e/dE_e$, $d\sigma_e/d\theta_e$, $d\sigma_e/dQ^2$: T2K (2014) on CH Phys. Rev. Lett. 113, 241803

Difficult measurement... Low stats ↔ large errors, no exclusive reactions.

Gargamelle: 244 events at ~90% purity T2K: 315 events at ~65% purity

Existing measurements and needs

Isolating v_e -like events:

EM-like final state selection

We train a multivariate classifier using these three characteristics of the energy deposition profile of the shower-like object

Isolating v_e -like events:

EM-like final state selection

Cut applied to kNN classifier output

1. Divide the energy deposits into bins of 10 g/cm² of areal density.

Correct the energy deposits for the calorimetry.
Determine the median of the energy deposits (excluding the last one).

PID variable: shower "width"

Ζ

PID variable: shower "width"

Then use the median of those standard deviations to characterize the event's "width" 31

Photon rejection cut

"Extra energy" cut

Constraining backgrounds

Background constraint: θ_{e}

Background constraint: E_e

Background-subtracted distributions

Events / degree

Events / GeV

37

Migration matrices

Unfolded distributions

Efficiency

Constrained flux prediction

Reduction of 5-10% in prediction, and 5-10 percentage points in predicted uncertainty as well

Flux prediction: ancestry

Flux prediction: ancestry

FNAL JETP / 18 Sept. 2015

Cross-section uncertainties

$\nu_{\rm e}\text{-}\nu_{\mu}$ comparisons

 Q^2 is the fundamental independent variable in the CCQE models. We can compare $d\sigma/dQ^2$ to a previous measurement from MINERvA on v_{μ} to directly test the principle of lepton universality our models rely on.

p.s.... beware: don't read too much into the shape. <u>The shape is not significant when the correlations in the</u> <u>uncertainties are taken into account.</u>

J. Wolcott / Tufts U. / NuINT 2015

Could it just be more electrons?

Very well modeled (x²/n.d.f. = 63.5/50).

<u>Unlikely to be an electron</u> <u>shower modeling problem.</u>

Could it be extra nuclear activity?

MINERvA muon neutrino CCQE found evidence that <u>sometimes more particles</u> <u>are produced at the vertex</u> than the simulation predicts.

Does the excess stem from <u>overlap</u> <u>between extra particles and the electron</u> <u>shower</u>?

Could it be extra nuclear activity?

MINERvA muon neutrino CCQE found evidence that <u>sometimes more particles</u> <u>are produced at the vertex</u> than the simulation predicts.

Does the excess stem from <u>overlap</u> <u>between extra particles and the electron</u> <u>shower</u>? (Simulated signal event)

Use a <u>sliding</u> techinque that looks for the *minimum* 100mm dE/dx in the first 500mm of cone. Designed to "step over" overlaps from nuclear activity

Could it be extra nuclear activity?

MINERvA muon neutrino CCQE found evidence that <u>sometimes more particles</u> <u>are produced at the vertex</u> than the simulation predicts.

Does the excess stem from <u>overlap</u> between extra particles and the electron <u>shower</u>?

Toy studies with extra protons of 0-200 MeV added randomly to 25% of v_e CCQE events <u>do not create a</u> <u>measurable excess.</u>

Not likely due to extra particles in v_{e} CCQE events.