Fragmentation studies in NOMAD experiment

Artem Chukanov¹, Roberto Petti²

¹Joint institute for nuclear research, Dubna ²University of South Carolina, USA

NuInt
15, Osaka, 19^{th} of November 2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

The NOMAD Experiment

MC tuning

Comparison of MC and Data

Comparison with GENIE generator

Summary

A. Chukanov

Fragmentation studies in NOMAD experiment

The NOMAD experiment

A. Chukanov

Fragmentation studies in NOMAD experiment

19.11.2015 3 / 22

The **NOMAD** experiment

- was looking for the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations
- protons energy from SPS (CERN) 450 GeV
- distance between π, K decay channel and detector 620 m
- mean neutrino energy $\langle E_{\nu_{\mu}} \rangle$ 24.3 GeV
- high statistic: $1.3 \times 10^6 \nu_{\mu}$ CC interactions
- more then 20 000 identified neutral strange particles

イロト イヨト イヨト イヨト

19.11.2015 4 / 22

The **NOMAD** detector

Fragmentation studies in NOMAD experiment

- 12

(日) (四) (王) (王) (王)

NOMAD neutrino event generation library

- LEPTO 6.1
- JETSET 7.4 (string fragmentation)
- GEANT 3 (tracing particles)
- DPMJET II (intranuclear reinteractions)

A. Chukanov

Fragmentation studies in NOMAD experiment

Default JETSET parameters - strange particles production yields. ν_{μ} CC interactions

Hadrons	MC (%)	Data $(\%)$	MC/Data
$\overline{K_S^0}$	11.4	8.99 ± 0.08	1.27 ± 0.01
Λ^0	9.0	6.21 ± 0.08	1.46 ± 0.02
$\bar{\Lambda}^0$	0.73	0.52 ± 0.02	1.41 ± 0.08
$\rho^{0}(770)$		19.50 ± 1.90	
$f_0(980)$		1.80 ± 0.40	
$f_2(1270)$		3.80 ± 0.90	
Fraction			
$\frac{N(K^{\star+} \rightarrow K^0_S \pi^+)}{N(K^0_S)}$	31.0	14.1 ± 0.9	2.20 ± 0.04
$\frac{N(K^{\star-} \rightarrow K^0_S \pi^-)}{N(K^0_S)}$	13.5	8.9 ± 0.08	1.5 ± 0.4
$\frac{N(\Sigma^{\star+}\to\Lambda\pi^+)}{N(\Lambda)}$	16.9	4.4 ± 1.0	3.8 ± 1.3

The agreement between MC and Data is poor

A. Chukanov

Fragmentation studies in NOMAD experiment

19.11.2015

<ロ> (四) (四) (三) (三) (三)

Tuning NOMAD event generator - ν_{μ} CC events

Reweighting for the cross-sections Events selection: $Q^2 > 0.8 \ GeV^2$, $E_{had} > 3GeV$

Analizing the following variables:

- Transverse size of the hadronic system
- Momentum and angle distributions of hadrons
- Primary tracks multiplicity
- Particles and resonances yields: Λ^0 , $\bar{\Lambda}^0$, K_S^0 , $K^{\star\pm}$, $\Sigma^{\star\pm}$, D^0 , $D^{\star 0}$, ρ^0 , f_0 , f_2 , di-muon events
- Formation length

Tuning: JETSET, DPMJET

8 / 22

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 - のへで

Find best JETSET parameters - strange particles production yields

Parameter	Description	Default	ALEPH	NOMAD
PARJ(1)	$\mathcal{P}(qq)/\mathcal{P}(q)$	0.10	0.106 ± 0.004	0.061
PARJ(2)	$\mathcal{P}(s)/\mathcal{P}(u)$	0.30	0.285 ± 0.015	0.198
PARJ(3)	$(\mathcal{P}(us)/\mathcal{P}(ud))/(\mathcal{P}(s)/\mathcal{P}(d))$	0.40	0.71 ± 0.08	0.130
PARJ(4)	$(1/3)\mathcal{P}(ud_1)/\mathcal{P}(ud_0)$	0.05	-	0.002
PARJ(5)	$\mathcal{P}(BM\bar{B})/(\mathcal{P}(B\bar{B}) + \mathcal{P}(BM\bar{B}))$	0.50	-	0.600
PARJ(6)	$s\bar{s}$ suppression in $BM\bar{B}$	0.50	-	0.500
PARJ(7)	s-meson suppression in $BM\bar{B}$	0.50	-	0.220
PARJ(11)	$\mathcal{P}(s=1)_{u,d}$	0.50	0.55 ± 0.06	0.380
PARJ(12)	$\mathcal{P}(s=1)_s$	0.60	0.47 ± 0.06	0.680
PARJ(13)	$\mathcal{P}(s=1)_{c,b}$	0.75	0.65	0.660
PARJ(14)	$\mathcal{P}(S = 0, L = 1, J = 1)$	0.0	0.12	0.150
PARJ(15)	$\mathcal{P}(S = 1, L = 1, J = 0)$	0.0	0.04	0.105
PARJ(16)	$\mathcal{P}(S=1, L=1, J=1)$	0.0	0.12	0.150
PARJ(17)	$\mathcal{P}(S=1, L=1, J=2)$	0.0	0.20	0.295

Fragmentation studies in NOMAD experiment

Find best JETSET parameters - global distributions behavior

Parameter	Description	Default	ALEPH	NOMAD
$\overline{PARJ(19)}$	Leading baryon suppression	1.0	0.57 ± 0.10	0.500
PARJ(21)	$\sigma_q \; (\text{GeV})$	0.36	0.370 ± 0.008	0.395
PARJ(23)	fraction of p_t tail	0.01	-	0.180
PARJ(32)	E_{min} (GeV)	1.0	-	0.200
PARJ(33)	E_{rem} (GeV)	0.80	-	0.200
PARJ(41)	a	0.30	0.40	1.350
PARJ(42)	$b \; (\text{GeV}^{-2})$	0.58	0.796 ± 0.035	0.800
PARJ(45)	a_{qq}	0.50	-	0.400
PARJ(54)	ε_c	-0.05	-0.04	-0.165
MSTJ(11)	fragmentation type	4	3	3
MSTJ(12)	baryon model	2	3	3

DPMJET: formation length - 2.5 fm

A. Chukanov

Fragmentation studies in NOMAD experiment

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Comparison of MC and Data for the NOMAD experiment

A. Chukanov

Fragmentation studies in NOMAD experiment

19.11.2015 11 / 22

New **JETSET** parameters - global variables

Fragmentation studies in NOMAD experiment 19.11.2015

New **JETSET** parameters - global variables

Fragmentation studies in NOMAD experiment 19.11.2015

1.2015 13 / 22

New JETSET parameters - particles and resonances production yields. ν_{μ} CC interactions

Hadrons	MC (%)	Data (%)	MC/Data
$\overline{K_S^0}$	8.80 ± 0.06	8.69 ± 0.08	1.01 ± 0.01
Λ^{0}	5.64 ± 0.05	5.86 ± 0.08	0.96 ± 0.02
$\bar{\Lambda}^0$	0.44 ± 0.01	0.43 ± 0.02	1.03 ± 0.06
$\rho^0(770)$	17.21 ± 0.04	19.50 ± 1.90	0.88 ± 0.09
$f_0(980)$	1.59 ± 0.01	1.80 ± 0.40	0.88 ± 0.20
$f_2(1270)$	3.52 ± 0.02	3.80 ± 0.90	0.88 ± 0.21
D^{*+}	0.98 ± 0.01	0.97 ± 0.14	1.01 ± 0.15
D^0	2.52 ± 0.02	2.69 ± 0.22	0.94 ± 0.08
Fraction			
$\frac{N(K^{\star+} \rightarrow K^0_S \pi^+)}{N(K^0_S)}$	17.1 ± 0.7	16.3 ± 1.1	1.0 ± 0.1
$\frac{N(K^{\star-} \rightarrow K^0_S \pi^-)}{N(K^0_S)}$	9.9 ± 0.5	8.9 ± 0.8	1.1 ± 0.1
$\frac{N(\Sigma^{\star +} \to \Lambda \pi^+)}{N(\Lambda)}$	6.1 ± 0.7	6.2 ± 1.4	1.0 ± 0.3

Fragmentation studies in NOMAD experiment 1

◆□ → < ⑦ → < ≧ → < ≧ → < ≧ → < ≧ → </p>
D experiment 19.11.2015 14

New JETSET parameters - particles and resonances production yields. ν NC interactions

 ν_{μ} NC interactions were not used for tuning

MC (%)	Data (%)	MC/Data
8.82 ± 0.10	8.78 ± 0.15	1.00 ± 0.02
6.31 ± 0.11	5.46 ± 0.14	1.16 ± 0.04
0.42 ± 0.03	0.40 ± 0.04	1.05 ± 0.11
14.3 ± 1.3	17.3 ± 2.2	0.8 ± 0.1
8.7 ± 0.9	6.8 ± 1.6	1.3 ± 0.3
4.9 ± 0.9	3.0 ± 1.8	1.6 ± 1.0
	$\begin{array}{c} \mathrm{MC} \ (\%) \\ 8.82 \pm 0.10 \\ 6.31 \pm 0.11 \\ 0.42 \pm 0.03 \end{array}$ $14.3 \pm 1.3 \\ 8.7 \pm 0.9 \\ 4.9 \pm 0.9 \end{array}$	MC (%)Data (%) 8.82 ± 0.10 8.78 ± 0.15 6.31 ± 0.11 5.46 ± 0.14 0.42 ± 0.03 0.40 ± 0.04 14.3 ± 1.3 17.3 ± 2.2 8.7 ± 0.9 6.8 ± 1.6 4.9 ± 0.9 3.0 ± 1.8

Fragmentation studies in NOMAD experiment

19.11.2015 15 / 22

(日) (四) (王) (王) (王) (王)

New **JETSET** parameters - Q^2 distributions

We can tune/study different kinematic regions (e.g. SIS). Thanks to the large statistics and the excellent reconstruction of the complete event kinematics.

A. Chukanov

Fragmentation studies in NOMAD experiment 19.11.2015

Multiple V^0 particles production in ν_{μ} CC interactions

Channels	Reconstructed events		MC/Data
	MC	Data	
$\Lambda^0 X$	6739	7123	0.95 ± 0.02
$K_S^0 X$	13379	13498	0.99 ± 0.01
$\bar{\Lambda}^{0}X$	559	559	1.00 ± 0.06
$K^0_S K^0_S X$	397	306	1.30 ± 0.10
$\Lambda^{\tilde{0}}K^{\tilde{0}}_{S}X$	367	266	1.38 ± 0.11
$\Lambda^0 \bar{\Lambda}^{ ilde{0}}$	50	39	1.28 ± 0.27
$K^0_S \bar{\Lambda}^0 X$	21	14	1.47 ± 0.51
$\Lambda^{0}\Lambda^{0}X$	8	10	0.84 ± 0.39
$K^0_S K^0_S K^0_S X$	6	2	3.06 ± 2.49

Fragmentation studies in NOMAD experiment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�? 19.11.2015

Comparison with GENIE-2.8.4 event generator

A. Chukanov

Fragmentation studies in NOMAD experiment

19.11.2015 18 / 22

Comparison of tuned NOMAD event generator with GENIE at event generator level for CNGS beam. ν_{μ} CC interactions

Hadrons	NOMAD (%)	GENIE (%)	GENIE/NOMAD
$\overline{K_S^0}$	5.31	6.46	1.21
$\Lambda^{0^{\circ}}$	4.88	7.63	1.56
$\bar{\Lambda}^0$	0.28	0.25	0.89
$\rho^0(770)$	14.27	19.30	1.35
$f_0(980)$	1.39	0	-
$f_2(1270)$	2.75	0	=
D^0	1.99	4.11	2.07
K^+	8.17	11.91	1.46
K^-	3.63	4.88	1.34
Fraction			
$\frac{N(K^{\star+}\to K^0_S\pi^+)}{N(K^0_S)}$	18.19	25.97	1.42
$\frac{N(K^{\star-}\to K^0_S\pi^-)}{N(K^0_S)}$	7.13	9.09	1.27
$\frac{N(\Sigma^{\star+}\to\Lambda\pi^+)}{N(\Lambda)}$	3.47	13.4	3.86

Fragmentation studies in NOMAD experiment 19.11.2015

イロト イヨト イヨト イヨト

15 19 / 22

Setting tuned JETSET parameters to the GENIE event generator

A. Chukanov

Fragmentation studies in NOMAD experiment

19.11.2015 20 / 22

Comparison of tuned NOMAD event generator with GENIE at event generator level for CNGS beam. ν_{μ} CC interactions

Hadrons	NOMAD (%)	GENIE (%)	GENIE/NOMAD
$\overline{K_S^0}$	5.31	4.38	0.82
Λ^{0}	4.88	4.67	0.96
$\bar{\Lambda}^0$	0.28	0.14	0.5
$\rho^0(770)$	14.27	14.76	1.03
$f_0(980)$	1.39	1.56	1.12
$f_2(1270)$	2.75	3.57	1.30
$\overline{D^0}$	1.99	4.15	2.09
K^+	8.17	7.54	0.92
K^-	3.63	3.42	0.94
Fraction			
$\frac{N(K^{\star+}\to K^0_S\pi^+)}{N(K^0_S)}$	18.19	17.32	0.95
$\frac{N(K^{\star-} \to K^0_S \pi^-)}{N(K^0_S)}$	7.13	7.13	1.00
$\frac{N(\Sigma^{\star+}\to\Lambda\pi^+)}{N(\Lambda)}$	3.47	5.49	1.58

Agreement is much better. Other hidden switches in GENIE

A. Chukanov

Fragmentation studies in NOMAD experiment

19.11.2015 21 / 22

I ∃ ≥

Summary

- a tuning of JETSET parameters has been perform with NOMAD data
- the default GENIE-2.8.4 fragmentation parameters disagree with NOMAD results
- the use of the tuned JETSET parameters in GENIE improves the agreement with NOMAD
- additional studies with **GENIE** event generator are required

NOMAD data offer an excellent tool for the optimization and development of existing event generators!

・ロト ・四ト ・ヨト ・ヨト