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Neutrinos in Nuclear Media

* Modern neutrino experiments rely on large v
A materials (Fe, Ar, C, HZO etc.) to obtain

adequate event rates.
*Nuclear effects can occur as interactions of
intermediate particles inside the nucleus, or

partonic effects which change the
kinematics of quarks within the nucleus.

* General strategy for partonic effects has

N
been to adapt nuclear effects from electron |
scattering into neutrino scattering. Nucler are not

© i B © point-like,
F=q,+q,+q,+q,+q, +q, +q, +q,~ there are

FN=ag" +a" +g" +a" +a" +a" +q" +g" Interactions
9,79, 79,79, 74,79, T4, T4, between and

within

nucleons.

Partonic effects translate free nucleon PDFs (F) to
nuclear PDFs (F")

w:l:
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Charged Lepton Nuclear Effects

u/e — Ca Ratio

1.7 .
. Eﬂ% Fermi matio
lq E139 Anti-sh:
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3
=039
0.3
! Shaduwiq{ EMC effect
OD.DUI /0.01 X 0.1 1
sea quark valence quark
Q2 Scaling variable Bjorken-x. In the
Tr = IME), . parton model, x is the fractional

momentum of the struck quark

e Shadowing and
Anti-shadowing: Depletion of
cross section at low x,
presumably compensated by a
enhancement from x ~ 0.1 —
0.3.

« EMC Effect: No universally
accepted cause.

e Fermi motion: Each quark is
allowed to have a maximum
momentum of x = A, so
increasing A increases
maximum allowable x.
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MINERVA Nuclear Targets

v
N

Active
Scint.
Modules

He Target
not pictured

/

5" Fe | .5” Pb
161kg/ 135kg

1” Pb /1" Fe 1” Pb 1" Fe
266kg | 323kg 266kgl323kg

3”CI1”"Fel 1" Pb 0.3” Pb
166kg I 169kg / 121kg
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Event Selection and Reconstruction

p.
Q 120
Q Primary Muon track is matched to 9
§ " MINOS. Matching acceptance is 6
=2 This track is used as an “anchor”  poor for high angle muons, so we
Q" to reconstruct an event vertex only accept events with ‘9“ <17° !
& 8o
n 70 / \ 6>
/ A o2
§ﬂ ) i i - | '—‘»’:’_’7’_‘{—_—1_
50 / e il 4
40 , 3
—F ) Additional hits not associated with || -
v, ? the muon are summed using 3
10

calorimetry to measure E___

/

0
i’) (l)/5I 1|0 1|5 2IO 2|5 3|0 3|5 40 45 50 55 60 65 70 75 80 85 9|0 95 160 1(|)5 l:ILO 115
If available, additional tracks are

used to improve the vertex fit. Module Number
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From Events to Cross Sections

Lead of Target 4

e " Area-Normalized —¢— Data .dG/dX — U(S - B)/(ES(I) A T)
E. 2'5; Stat. Errors Only “\(I:VC::ES inelastic
g 2 — P
& ' W1, 022 ePartonic effects between two nuclei
=z 1 .
are measured as ratios of do/dx.
0.
*Thus: do*/dx / do“/dx =[ (S*—B")/
.Bjorke.n X (SC— BC) ]* [(ECTC) / (EA TA)]
*The first step in calculating
a Cross section is to measure Decreasing x g
the number of signal events. v -
\/ I Vv [ i
I
e In an inclusive cross ~ \/+ \/Jr
section, count all oy events Wt W 1 W
11
regardless of channel. N~ p P T g T T K 0
— — T Kx
CCOQE Resonance prt DIS
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Inclusive Ratios: do /dx

Ratio of % : dg—j Ratio of 907 . do™* Ratio of 90™; 0™

20r 20 dx " dx 20 dx _ dx
o y2Indf = 6.05/6 = 1.01 o y¥Indf = 25.87/6 = 4.31 o y2ndf = 58.46/6 = 9.74 *
i 1.6f B Seviton C/CH A Rt 1.6f . St
%\% l g Fe/CH | l Ph/CH
?8‘1’; 1.2:+ 12? ‘ 1.2f
o 04t o
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
Reconstructed Bjorken x Reconstructed Bjorken x Reconstructed Bjorken x
*Data are presented as differential cross-section ratios in reconstructed x: we do
not correct for detector smearing.
*We observe an excess in the data at large x, and a deficit at low x, which grows
with the size of the nucleus.
 The low x events are at a low Q* (0.5 (GeV/c)*) and cannot be interpreted as
quark-level interactions.
e High x events are a mixture between quasi-elastic and resonant.
Tice, Datta, Mousseau et. al, Presented at Nulnt 2014
Phys. Rev. Lett. 112, 231801 (2014). London, UK
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How Deep i1s Your Scattering?

e Momentum transfer: Q° = [k —k'|>. QE
*Q°> 1.0 (GeV/c)’ to be enough '
momentum transfer to resolve the
quark structure of the nucleons. Eep
‘W > 2.0 (GeV/c) safely avoids the ©
majority of resonances.

107

snupn) Aup.niqay

%1 03 Signal - Tracker Modules 45-50 1 03 Signal - Tracker Modules 45-50
D RVA. Preliminary S — reliminar
o AR omaied ~ Data A T —+ Data
3 1of 8126420 POT —— Simulation ) - 3126420 POT —— Simulation
(0] r o 12F -
= ok Q* = 2E,(E -p cos(6,)) - - W = | M2+2ME, - Q2
: - ~ 10F
o L
0 : S 8
€ >
o 06 w 6
1T - Z E
-  0.4f af
0.2f 2f
golo b be WL * ot b
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Reconstructed Q? (GeV/c)? Reconstructed W (GeV)
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Backgrounds (Kinematic):

DIS Candidates: Tracker Modules 45-50 . . .
ety T e * After making kinematic cuts on Q* and

> - —4— Data
‘2 Zzz + Emﬁmsow 20 W, we are left with a background of
5 ol events with true Q° < 1.0 (GeV/c)” and
& 150 W < 2.0 (GeV/c?) that smear into the
< 100 v Sample.

50

510 15 20 25 30 3 40 45 50 eEstimate this background in the nuclear

~ Reconstructed Neutrino Enerﬂi((?:::l targEtS and SCintillatOF USing MC (IEft
3 | plots).
=
g *MC is tuned to data using events
g adjacent to W = 2.0 (GeV/c*) and Q°* =
1.0 (GeV/c)>

0““0.5”“1” = 5 2.5““3

Reconstructed Q? (GeV/c)?
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Fitting Sidebands

DIS Candidates: Lead of Target 4

Scale Factors Applied to Simulation (stat. Error only) gl ~ o
=) i EE3 TRUEQ?<1.0W 220
A w.,<20 Q  <10W _>20 - or Ly £ w20
C 0.90+0.08 1.58+0.11 N =
60—¢4 POT-Normalized
CH 0.94£0.01 1.57+0.02 "
Fe 0.9910.04 1.58i0.05 20 .......................
Pb 0951003 136i005 : Régon;irucztid r?lseutfi?'no I3£5ner;(; ((;:V) K
e The MC of both sidebands are fit Before Fitting
simultaneously over the region 5 <E_<50 s D":' oty eacel Teree!
o - -TRUEDIZS oW 20
GeV using a x° minimization. 2o ML (BT
% = = 4 Tuned Non-DIS Background
e The data and MC of each target is summed by uzJ = = |
material prior to fitting, so we end up with a . L

Scale faCtOr fOr C, CH, Fe and Pb

05 10 15 20 25 30 35 40 45 50

 Primarily, the data prefer more backgrounds. Reconstructed Neutrino Energy (GeV)
After Fitting
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Background Events (Wrong Nuclei)

vertex s e Events occasionally trul
reconstructed in : o y y
True vertex (blue star) the Fe (green). occur in the scintillator
is “‘hthe same mate(‘ilal However, the surrounding the nuclear
as the reconstructe
vertex (orange star) < rue verte.x (-)f target, but are
the event is in reconstructed to the
the scintillator . Thi K
(yellow). passive target. This makes
o up a second background.
] 3.5F .
d:J . EArea Normalized . .
R e We subtract this background by measuring
D o5l | sntilatr || the event rates in the downstream tracker,
of Events in this and extrapolating these events upstream to
= Box... )
(b the nuclear target region.
- 1
iS FT[ Peepesteensestorerestor ,
osk e Downstream events are weighted for MINOS
S Tt acceptance based on E , 0 .
oL LR L i gl | H M
500 550 600 650 700

450
Reconstructed Z Vertex
...Used to predict BG events here
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Wrong Nuclei BG (Data / MC)

Plastic BG Prediction for Lead of Target 2

—4— Data

*Wrong nuclei backgrounds are extracted

> u
& B8 Sirutston separately for data and MC, in each variable
Q =
T4 (Ev, X, etc.)
£ 12
2 1op :
g E =S *In each case, the non-DIS events have been
5 subtracted using the procedure previously
4F .
ZF described.
050 15 20 25 30 35 40 45 50 ‘Pl‘EdlC’[lO.l’l
Reconstructed Neutrino Energy (GeV) Plastic BG Uncertainty from %2 Lead of Target 2 accuracy 1S
- i a— g 1.6 Stat. Error Only x%ndf = 14.92/4 = 3.73 measured
o 1400 BB Simulation - - Full Systematic x%ndf = 3.85/4 = 0.96
£ 120 g 14 from MC.
B £ B .. e
2 00 = 12 Additional
- 1T] .
= 80; POT:Normalized 8 1 SyStematlc
0 ; 0.8 uncertainty is
0 ol calculated
20E ———— 04: fromthe
Reconstructed Bjorken x Reconstructed Bjorken x )
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Putting it Together

DIS Sample - All Carbon
. : . Data events

3120:20POT Simulation with non-DIS events

Data Background-------------------------/ subtracted.

- Sim. Background —

Simulated DIS events,

/ reconstructed in C

Wrong nuclei
events, with
non-DIS events
subtracted.

N Events / 1.0 GeV

5 10 15 20 25 30 35 40 45 50
Reconstructed Neutrino Energy (GeV)

11/19/2015 Joel Mousseau — Nulnt 2015 13



Putting it Together

DIS Signal - All Carbon

° E POT-Normalized ~- Data
O 5o smzearor == Simulation
S -
5 4of i
Take our sample of - +
. B |
reconstructed DIS events in g R
carbon with CH events... 2 af 4
DIS Sample - All Carbon 10 i + +
80% POT-Normalized —4— Data ,"
S S Simulation 0570 15 20 25 30 35 40 45 50
D 70L + Data Background .
RN + + " sim. Background Reconstructed Neutrino Energy (GeV)
S -
L S } ?
2 af |
:,J’ E ...And subtract those events to obtain a
z 204 I = | sample of DIS on carbon in data and MC.
10 m Large uncertainties on neutrino flux,
% H0 15 20 25 30 35 40 45 50 measure ratios of C, Fe and Pb /CH where
Reconstructed Neutrino Energy (GeV) flux will cancel
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Efficiency and Smearing Corrections

e Detector smearing is corrected via Bayesian unfolding with one iteration.

e Efficiency is corrected target by target, since it is a function of the
distance from the target to MINOS.

e Largest source of inefficiency is MINOS matching requirement. This
acceptance improves as we move downstream in the detector.

Total Efficiency: Iron of Target 1
y g Total Efficiency: Iron of Target 5

> iSm Errors.Onl —
% 0'75 5 0.7:7819 Errors. Onl
S 06 8
E B ‘0 0.6
0.5F = -
B W o5F
0.4F -
- 0.4
0.3 Downstream 03k
0.0 toward F L
E a a »02: * . et
0.1 e —e
— MINOS o1
05 10 15 20 25 30 35 40 45 50 0:|“““““|“|\|\\\\\I\\\\I\\I\\I\
5 10 15 20 25 30 35 40 45 50

True Neutrino Energy (GeV) True Neutrino Energy (GeV)
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DIS Ratios: o(E )

Ratio of oC: ¢ Ratio of of¢: ot Ratio of o : ¢!
1.8 1.8 1.8
B =4 Data B =4 Data B =4 Data
- | 312+20POT = simulation - 312+20POT = Simulation - 312+20POT = simulation
1.6 | NOT Isoscalar Correcte 1.6/~ NOT Isoscalar Correcte 1.6~ NOT Isoscalar Correcte
1.47 C/CI--I 147 | [ 147 Pk)llc:l 1
: g z x e/ z : |
o 12f } © 1.274 } © 12 |
=~ ~ T ~ -
) = B o L 2 F ) }
I B | ! 1.0 _\_L'_L—;_‘—\f—‘ 10 t
[ '] © B o) : 1 +
08 0.8F 0.8F
0.6F 0.6F 06}
5‘”10””15‘“20”“25“‘\’30“”\'35‘”40””45“50 5“”10””15”‘20””25‘“30‘”‘35“‘40‘”‘45“‘50 5‘”‘10‘“15””20”‘25””30‘“‘135””40‘”;15“50
Neutrino Energy (GeV) Neutrino Energy (GeV) Neutrino Energy (GeV)

*Ratios of the heavy nuclei (Fe, Pb) to lighter CH are evidence of nuclear
effects.
eCurrent simulation assumes the same nuclear effects for C, Fe and Pb.

*There is a general trend of the data being below the MC at high
energy.
*This trend is larger in the lead than in the iron.
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DIS Ratios: do /dx

0 of d0¢. do® 10 of d07°. do® 0 of 907, do®
Ratio of o’ dx Ratio of o X Ratio of ax " dx

15; 3.12e+20 OT r‘/f\

12e+2 3.12e+20 POT
E  NOTlIsoscalar Corrected i

1.2~ NOT Isoscalar Corrected

3.12e+20 POT
NOT Isoscalar Corrected

140 ; T
I = z 1.1 1z | —
O (X O [ X - 0 | % o
(ol k. oo : 1 QT :
3 o ; T : :
- ~ 1.0F ~ Of
tlx s /CH TR b/CH
oI 3% o9f e B° ogf T
0.8} 0.8}
0.8F =4 Data i =4+ Data i =4+ Data
- FSimHIation | i FSimuﬂation - .Simtflation |
0'8.0 01 02 03 04 05 06 07 0'6.0 01t 02 03 04 05 06 07 0'6.0 01 02 03 04 05 06 07
Bjorken x Bjorken x Bjorken x

*X dependent ratios directly translate to x-dependent nuclear effects.
*Currently, our simulation assumes the same x-dependent nuclear effects for
C, Fe and Pb tuned to e scattering.

*The shape of the data at low X, especially with lead is consistent with
additional nuclear shadowing.

*The intermediate x range of (0.3 < x <0.75) shows good agreement
between data and simulation.
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Ratio Uncertainties

Errors on Ratio of o€ : o

> 0.18

Fractional Uncertaint

3‘ 0.35 - [— Total Error Data Stat.
£ "L |—— BGScale — Detector Res.
1] [ | —— FSI Models — Flux + Mass
"a_'; 0.30—| — Interaction Models —— MC Stats.
3] B
c 0.25(
) r
‘® 0.20f
c B
o -
w= 0.15F
[T) =
© u
i 0.10}-
0.05F
:\\\\\\\\\\\\\\T \\\\\\\\ TR R R
0'005 10 15 20 25 30 35 40 45 50

Neutrino Energy (GeV)

Errors on Ratio of of¢: o®H

| —— BG Scale
0.1 6: —— FSI Models

[ |=—— Total Error = Data Stat.
— Detector Res.
— Flux + Mass
0.14-l— Interaction Models =~ —— MC Stats.

0.12F

0.10[

0.08f

0.06}

Fractional Uncertainty

0.04]

0.025

000?““

| ol b v b b b L
~5 10 15 20 25 30 35 40 45 50

Neutrino Energy (GeV)

-1% [ —— FSI Models

0005750 15 20 25 30 35 40 45 50

Errors on Ratio of oF?: ¢t

r —— Total Error - Data Stat.

- —— BG Scale — Detector Res.
— Flux + Mass

[ _— Interaction Models =~ —— MC Stats.

0.02}

Neutrino Energy (GeV)

*Most of the uncertainty stems from data and MC statistics.
« MC statistics enter during the BG subtraction and efficiency

correction steps.

eUncertainties in the Interaction model enter via the BG
subtraction, and are non-trivial.
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Fractional Uncertainty

0.051

0.25F
0.20F
0.15}

0.10}

0.08 :

Ratio Uncertainties

Errors on Ratio of @: do®™

dx ~ dx Errors on Ratio of ddi;e: dg—;H
| | —— Total Error - Data Stat. > F
—| — BG Scale — Detector Res. &' 0.16|— Total Error - Data Stat.
[ | — FSI Models —— Flux + Mass £ - | — BG Scale — Detector Res.
- | — Interaction Models —— MC Stats. 8 0.14 — FSIModels — Flux + Mass
a T |— Interaction Models —— MC Stats.
Q 0.12¢
[= C
= 0.10p
g -
S 0.08:
=]
g 0.06:
.................... S B
L 0.04
[ ] 0.02
coon b v P e b L
0 01 02 03 04 05 06 07 0_080‘”‘0‘1‘”‘0|2 0I30‘4050607
Bjorken x

Bjorken x

Fractional Uncertainty

0.14

0.12

0.10
0.08|
0.06}

0.02

0.04}

%%0 01 02 03 04 05 06 07

Pbh CH
Errors on Ratio of 99 ; do™
dx °~ dx
— Total Error o Data Stat.
—— BG Scale — Detector Res.
L —— FSI Models — Flux + Mass
[ _— Interaction Models —— MC Stats.

Bjorken x

*The x-ratios are almost completely stats-dominated,
especially in the shadowing (0 < X, <0.1) and EMC (0.4 Xpi <

0.75) bins.

Higher intensity, high energy data currently being taken will

Improve the statistical uncertainties.
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DIS Compared with Inclusive

; o o o Raloof G
¥ .-‘-a"ii:fi.Z?J*md - 2 W *In this case: Bjorken x is now
i L | s " e B smeared by detector effects
g g, e | T (no unfolding).
5 o + i *In both cases; we observe a
°'8 +o :8 ] e | deficit in low x events for the
T e P T b ;;m;juctj;mi;enjﬁ o heavy nuclei (Fe, Pb) which
CCDIS (note different axis range) 1S ]arger for Pb.
" Raioof 42 42 ) - e There is some suggestion of
o x2’1df-25-8“6-4-31 | ridf=s0466=074 a stronger effect for DIS.
L o B T e Our current neutrino energy
3% o and limited muon acceptance
5% :ﬂ_ Coy ef‘aé :2 ot . is not suffi;ient to measure
S e g Fermi motion effects in DIS.
020 02 04 06 08 10 12 14 Ozo "0z 04 06 08 10 12 14
Reconstructed Bjorken x Reconstructed Bjorken x
CC Inclusive (note different axis range)
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Alternative x-Dependent Models

Bodek-Yang '13 Modifications at G = 5.00 GeV?  GENIE's current parametrization of
% . Fleoscalar Comrected —amezsz ]| nuclear effects assumes the same x
= 4 Ratios Oerbor dependence for all nuclei heavier than
“ josf Lead He.
1/ :\ * Not very physically motivated. We

0.95 know, for example, the EMC effect is

0?8'2 P strongly dependent on nuclear density.

e D «Bodek Yang 2013: update to GENIE's

075k existing model, assumes a scaling

o 01 02 03 04 05 06 07 08

Biorkenx  d€pendent on A (top left).

. : 11f Z/N =26/30 (iron) [t |
* Cloet calculation: theoretical e G a4
calculation by lan Cloet and other ~§
Argonne collaborators of the nuclear ¢ osly
. R . 3]
medium modification. orl RZ -,
0.6 R%c “““““ 'UvA/Uf 0% = 5GeV? -
I. C. Cloet et. al. Phys. Rev. Lett. 109 o oz o1 06 os 1

T

182301 (2012)
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Alternative x-Dependent Effects

do®, do™ do™ , do® do™ . do™
Ratio of Ratio of : Ratio of :
1.6: dx Cdx 13 dx Cdx 13 dx Cdx
150 312420 POT E 3128420 POT L 312420 POT
1 45 NOT Isoscalar Corrected 1.2 NOT Isoscalar Cgrrected 1.2~ NOT Isoscalar Corrected
T - B I
T 1.3E I 1.1 l z 14 I
e ofts s
3/ 12 3/ ° o - |
- c -~ 1.0 ~ 10
°b‘ SRNE ' Elx F lx L I
- o B B
T B° o9f 3I° ook
0.9 B —4— Data (syst. + stat.) B —4— Data (syst. + stat.) B —4— Data (syst. + stat.)
“E Cloet C / CH 0.8" Cloet Fe / CH 0.8k Cloet Pb / CH
08- BY13C/CH X —— BY13Fe/CH X —— BY13Pb/CH
- —GENIE262C/CH ‘ N —GENIE262Fe CH ‘ N —GENIE262Pb CH ‘
0'8.0 01 02 03 04 05 06 0.7 0'8.0 0.1 02 03 04 05 0 6 0.7 0'6.0 01 02 03 04 05 06 0.7
Bjorken x Bjorken x Bjorken x

e Our data currently lacks statistical precision to differentiate between
different effects, particularly on the edges of the distribution.

* But the models themselves show significant disagreements from each
other, especially in the EMC region (0.3 < x < 0.7).

* This is strong motivation to accumulate and analyze additional medium
energy neutrino and anti-neutrino data, which will be able to resolve
these discrepancies.

* Additionally, better observe these differences in shadowing between e
and v

H
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Future Directions

eFuture studies of nuclear . Neutrino Flux
effects will benefit greatly 5 O T
from MINERVA's increased 3 o
energy and intensity run, £ DIS Region
taking data as we speak. £ :
g oogf S —
Expect much better sensitivity 0.06f
at high and low x with 0.04t :
increased beam energy. 0.02t i
R ...6...8...1gn.er192y«;:\;

*Currently have a quasi-elastic analysis in nuclear targets in
progress for Low Energy beam.
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Conclusions

* MINERVA has made a measurement of neutrino DIS events on
multiple nuclei in an identical neutrino beam.

e Unlike our previous inclusive measurements, these measurements
may be interpreted directly as DIS x-dependent nuclear effects.

*We currently observe a deficit in our lead data suggestive of
additional nuclear shadowing.

*Our data in the EMC region shows no deviation from theory,
however we lack the precision to distinguish between different
theories.

e Future higher energy measurements will be higher statistics as well
as the ability to resolve larger x values.
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Isoscalarity

Heavier nuclei (Fe, Pb) are composed of an unequal
number of protons and neutrons (e.g. Pb: 82 protons, 125
neutrons).

«The v, + N cross section is different for protons and

neutrons; v, want to couple to d quarks, and the neutron

contains more d than u quarks.

*This effect is x dependent (higher x = more valence quarks
— more d quarks.

eCorrect for this using GENIE's model of neutrino
free-nucleon scattering.

alvng)
1+ (NB/Z5) U(i,p}r} Isoscalar correction of two nuclei A

and B with Z protons and N
neutrons.

fiso =(A/B) X (Zp/ZA) o(vny)
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Isoscalar Ratios

. do®, do®™ .o dote, do™ . do®, do®M
Ratio of =—: = — Ratio of =—: =— Ratio of =—~—: ——
1.6: dx ° dx 13 dx * dx 13 dx © dx
150 312420 POT E 3128420 POT L 312420 POT
1 45 Isoscalar Corrected 1.2 Isoscalar Corrected 1.2~ Isoscalar Corrected
) 13F -SIERRIE ' | % g
0% C QX g 1 O | X
8% 1o | LI 58
~ E ~ 1 | ~
o g Y X
b‘ x | X :
3T B° o9f 30
p 0.8} 0.8}
0.8F =4 Data N =4 Data - =4 Data
u — Simulation B — Simulation - ~— Simulation
0.*”\””””””HHMH\HH\H 0-8””””\”””HH\HH\HH\H 0.6””HHHHHHHHHH\H i
8.0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07 0O 01 02 03 04 05 06 07
Bjorken x Bjorken x Bjorken x

e Ratio is reduced significantly at large x, where the valence quarks
dominate.
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dronic Reconstruction

*Recoll energy = all non-muon energy in a [-25,30] ns window

) hits
of the vertex time. Erea=ax S E

-Calibrated energy deposits (E) in the detector Weigheél by

the energy lost in passive material (c; see table).

Energy lost by a minimum ionizing particle Recoil energy resolution in scintillator
in each material

o
3

SIMULATION

Overall scale factor (a)
computed from simulation

_- PRELIMINARY ]
1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I_

0'00 5 10 15 20 25

True recoil energy, E (GeV)

0.2

Calorimetric energy resolution, 6/E
o
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Hadronic Energy Resolution

Resolution on Hadronic Energy (GeV), Iron of Target 2. 0.00 <x < 0.10 Resolution on Hadronic Energy (GeV), Iron of Target 5. 0.00 < x < 0.10 Resolution on Hadronic Energy (GeV), Tracker Modules 45-50. 0.00 <x <0.10
180 2201 600|- +
160/ Mean:0.01 Te 2000 Mean : 0.02 e Mean : 0.04 i H
RMS : 0.20 1 180l RMS:0.17 | S 500l RMSs:0.17 I
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eHadronic energy resolution consistent across targets.
eL.owest x-bin (high energy showers).
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Test Beam

- EH positive pions

{
{
J
; {

data with stat. uncertainty

e
~

e The MINERVA detector's hadronic energy
response is measured using a dedicated test beam
experiment at the Fermilab Test Beam Facility
(FTFB)

e Custom built beamline collected data during the
summer of 2010.

e In addition to a Birk's Law calculation, hadronic

e
=]

e
o
— 1 1 1 1

energy response / incoming energy

MC with syst. uncertainty
| IR EPEEEN EPREE B PP B |

energy reconstruction uncertainty is estimated X N SN N
from difference between test beam data and Aliaga L. et. Al. NIM A789 (2015) 28
GEANT simulation.

= EH negative pions

e
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o
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data with stat. uncertainty
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MC with syst. uncertainty

04 06 08 1 1.2 . 1. 8
pion total energy = available energy (GeV)
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MINOS Matching

e Curvature algorithms break down as the particle approaches the MINOS
magnetic coil, or exit from the sides of MINOS.

* High energy MINERVA analyses are statistics limited; we cannot afford to
be as conservative with coil radius cuts compared to MINOS.

\
Electromagnetic \ Given a

Calorimeter _—" track her
/
MINOS Near

Hadronic
Calorimeter \ ' Detector

SUo} G|

SU0} Og

F 3

“-—2.14 m—m—m—>

< - - 3.45m >
yCan we find it

here? \*\

wz—>

MINOS Near Detector

(Muon Spectrometer) COIL HOLE

Figure adapted from P. Adamson et. al.
Phys.Rev. D91 (2015) 012005
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Accept Events in this
region...

» Another possible
failure mode:
tracks stopping
in (or traveling
through) the
MINOS coil.

e Two different
radii cuts tuned
to avoid muons
traveling through
the coil, or
exiting the sides.

_— e

NN

|
COIL HOLE Reject Events
In these regions
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Event Table

0-0.1 90 310 310 - Shadowing
0.1-0.2 270 1200 1220

Anti-
0.2-0.3 250 1160 1230 :> Shadowing
0.3-0.4 140 580 690
0.4 - 0.75 100 390 460 :> EMC
0.75+ 1 1 ~ <—— Fermi Motion
TOTAL 850 3640 3900

* Most of our events are in the anti-shadowing and shadowing region; but we do
have a large number in the EMC region.
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Migration and Unfolding

e Detector reSOIUtlon smears the ) Migration - Carbon of Target 3

reconstructed values of x and N
E_from their generated 3.
quantities (right plot). Sodf
03¢
« Correct for this smearing using "2 0
unfolding separately for each 3 | 10
: - % o1 02 03 04 05 06 07
target, since detector respons Migration ecomarucior Borar x
IS slightly different. Matrices used
| as input |
= F POT-Normalized —+- Data i POT-Normalized —+- Data
E 300; 12620 POT — Simulation % 300; 12e+20 POT —— Simulation
P
i >
- Unfold using
sof Bayesian unfolding
N S T R N R With 1 iteration ol ——
0 0.1 02 03 04 05 06 07 0 0.1 02 03 04 05 06 07
Reconstructed Bjorken x Unfolded Bjorken x
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