

Present status of single pion production in neutrino-nucleus reactions

Luis Alvarez Ruso

E. Hernandez¹, J. Nieves², M. Vicente³ ¹ U. Salamanca, ² IFIC, CSIC, ³ U. Valencia,

• Why π production?

Why π production?

Important contribution to the inclusive νA cross section

RES = predominantly Δ (1232) excitation $\Rightarrow \Delta \rightarrow N \pi$

L. Alvarez-Ruso, IFIC

• Why π production?

Important contribution to the inclusive vA cross section

RES = predominantly Δ (1232) excitation $\Rightarrow \Delta \rightarrow N \pi$

Why π production?

Important contribution to the inclusive νA cross section CC: $\nu_l N \rightarrow l^- \pi N'$

source of CCOE-like events (in nuclei)

needs to be subtracted for a good E_{ν} reconstruction

Why π production?

Important contribution to the inclusive νA cross section
 CC: $\nu_l \ N \to l^- \pi \ N'$

source of CCQE-like events (in nuclei)

 \blacksquare needs to be subtracted for a good ${\rm E}_{\!\nu}$ reconstruction \blacksquare NC: $\nu_l \: N \to \nu_l \: \pi \: N'$

 $\blacksquare \pi^{o}$: e-like background to $\nu_{\mu} \rightarrow \nu_{e}$ searches

improved at T2K with a π° rejection cut

Why π production?

Important contribution to the inclusive νA cross section
 CC: $\nu_l \ N \rightarrow l^- \pi \ N'$

source of CCQE-like events (in nuclei)

 \blacksquare needs to be subtracted for a good ${\rm E}_{\!\nu}$ reconstruction \blacksquare NC: $\nu_l \, N \to \nu_l \, \pi \, N'$

 $\blacksquare \pi^{0}$: e-like background to $\nu_{\mu} \rightarrow \nu_{e}$ searches

Interesting for hadronic physics

■ Nucleon-Resonance (N-△, N-N*) axial form factors

Key ingredient for 2p2h models

$$\nu_l N \to l \pi N'$$

• CC:
$$\nu_{\mu} p \rightarrow \mu^{-} p \pi^{+}$$
, $\overline{\nu}_{\mu} p \rightarrow \mu^{+} p \pi^{-}$
 $\nu_{\mu} n \rightarrow \mu^{-} p \pi^{0}$, $\overline{\nu}_{\mu} p \rightarrow \mu^{+} n \pi^{0}$
 $\nu_{\mu} n \rightarrow \mu^{-} n \pi^{+}$, $\overline{\nu}_{\mu} n \rightarrow \mu^{+} n \pi^{-}$

$$\begin{array}{l} \bullet \quad \mathsf{NC:} \quad \nu_{\mu} \, p \to \nu_{\mu} \, p \, \pi^{0}, \qquad \overline{\nu}_{\mu} \, p \to \overline{\nu}_{\mu} \, p \, \pi^{0} \\ \nu_{\mu} \, p \to \nu_{\mu} \, n \, \pi^{+}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, n \, \pi^{0} \\ \nu_{\mu} \, n \to \nu_{\mu} \, n \, \pi^{0}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, n \, \pi^{0} \\ \nu_{\mu} \, n \to \nu_{\mu} \, p \, \pi^{-}, \qquad \overline{\nu}_{\mu} \, n \to \overline{\nu}_{\mu} \, p \, \pi^{-} \end{array}$$

CC data

Formaggio, Zeller, Rev. Mod. Phys. (2012)

Nulnt15

NC data

Formaggio, Zeller, Rev. Mod. Phys. (2012)

Discrepancies between ANL and BNL datasets

Reanalysis by Wilkinson et al., PRD90 (2014)

- **Flux normalization independent ratios:** CC1 π^+ / CCQE
- Good agreement for ratios
- Better understood CCQE cross section used to obtain the CC1 π^+ one

Discrepancies between ANL and BNL datasets

Reanalysis by Wilkinson et al., PRD90 (2014)

- **Flux normalization independent ratios:** CC1 π^+ / CCQE
- Good agreement for ratios
- Better understood CCQE cross section used to obtain the CC1 π^+ one

$$\nu_l N \to l \pi N'$$

From Chiral symmetry:

Hernandez et al., Phys.Rev. D76 (2007) 033005

• Δ (1232) excitation:

N- Δ transition current:

$$J^{\mu} = \bar{\psi}_{\mu} \left[\left(\frac{C_{3}^{V}}{M} (g^{\beta\mu} \not{\!\!\!}_{\mu} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_{5}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) \right) \gamma_{5} \right. \\ \left. + \frac{C_{3}^{A}}{M} (g^{\beta\mu} \not{\!\!}_{\mu} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{A}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_{5}^{A} g^{\beta\mu} + \frac{C_{6}^{A}}{M^{2}} q^{\beta} q^{\mu} \right] u$$

■ Vector form factors ⇔ Helicity amplitudes

L. Alvarez-Ruso, IFIC

N- Δ transition current

$$J^{\mu} = \bar{\psi}_{\mu} \left[\left(\frac{C_{3}^{V}}{M} (g^{\beta\mu} \not{\!\!\!}_{d} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_{5}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) \right) \gamma_{5} \right. \\ \left. + \frac{C_{3}^{A}}{M} (g^{\beta\mu} \not{\!\!}_{d} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{A}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_{5}^{A} g^{\beta\mu} + \frac{C_{6}^{A}}{M^{2}} q^{\beta} q^{\mu} \right] u$$

Helicity amplitudes can be extracted from data on π photo- and electro-production

$$\begin{aligned} A_{1/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = -1/2 \right\rangle \zeta \\ A_{3/2} &= \sqrt{\frac{2\pi\alpha}{k_R}} \left\langle R, J_z = 3/2 \left| \epsilon_{\mu}^{+} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \\ S_{1/2} &= -\sqrt{\frac{2\pi\alpha}{k_R}} \frac{|\mathbf{q}|}{\sqrt{Q^2}} \left\langle R, J_z = 1/2 \left| \epsilon_{\mu}^{0} J_{\rm EM}^{\mu} \right| N, J_z = 1/2 \right\rangle \zeta \end{aligned}$$

N- Δ transition current

$$J^{\mu} = \bar{\psi}_{\mu} \left[\left(\frac{C_{3}^{V}}{M} (g^{\beta\mu} \not{\!\!\!}_{d} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_{5}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) \right) \gamma_{5} \right. \\ \left. + \frac{C_{3}^{A}}{M} (g^{\beta\mu} \not{\!\!}_{d} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{A}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_{5}^{A} g^{\beta\mu} + \frac{C_{6}^{A}}{M^{2}} q^{\beta} q^{\mu} \right] u$$

Helicity amplitudes can be extracted from data on π photo- and electro-production Tiator et al., EPJ Special Topics 198 (2011)

N- Δ transition current

$$J^{\mu} = \bar{\psi}_{\mu} \left[\left(\frac{C_{3}^{V}}{M} (g^{\beta\mu} \not{\!\!\!}_{\mu} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + \frac{C_{5}^{V}}{M^{2}} (g^{\beta\mu} q \cdot p - q^{\beta} p^{\mu}) \right) \gamma_{5} \right. \\ \left. + \frac{C_{3}^{A}}{M} (g^{\beta\mu} \not{\!\!}_{\mu} - q^{\beta} \gamma^{\mu}) + \frac{C_{4}^{A}}{M^{2}} (g^{\beta\mu} q \cdot p' - q^{\beta} p'^{\mu}) + C_{5}^{A} g^{\beta\mu} + \frac{C_{6}^{A}}{M^{2}} q^{\beta} q^{\mu} \right] u$$

Axial form factors

$$\begin{split} C_6^A &= C_5^A \, \frac{M^2}{m_\pi^2 + Q^2} \leftarrow \text{PCAC} \\ C_5^A &= C_5^A(0) \left(1 + \frac{Q^2}{M_{A\Delta}^2} \right)^{-2} \end{split}$$

Constraints from ANL and BNL data on $u_{\mu} d
ightarrow \mu^{-} \pi^{+} p n$

with large normalization (flux) uncertainties

ANL and BNL data do not constrain C^A_{3,4}: consistent with zero Hernandez et al., PRD81(2010)

L. Alvarez-Ruso, IFIC

N- Δ axial form factors: determination of CA₅(0) and M_{A Δ}

 $C_5^A = C_5^A(0) \left(1 + \frac{Q^2}{M_{A\Delta}^2} \right)^{-2}$

- From ANL and BNL data on $u_{\mu} \, d o \mu^{-} \, \pi^{+} \, p \, n$
- Graczyk et al., PRD 80 (2009)
 - Deuteron effects
 - Non-resonant background absent
 - $C^{A_5}(0) = 1.19 \pm 0.08$, $M_{A \Delta} = 0.94 \pm 0.03$ GeV
- Hernandez et al., PRD 81 (2010)
 - Deuteron effects
 - $C^{A_5}(0) = 1.00 \pm 0.11$, $M_{A \Delta} = 0.93 \pm 0.07$ GeV
 - **20%** reduction of the GT relation $C_5^A(0) = 1.15 1.2$

- **N**- Δ axial form factors: determination of C^A₅(0) and M_{A Δ}
- $C_5^A = C_5^A(0) \left(1 + \frac{Q^2}{M_{A\Delta}^2} \right)^{-2}$
- From ANL and BNL data on $u_{\mu} \, d
 ightarrow \mu^{-} \, \pi^{+} \, p \, n$
- Graczyk et al., PRD 80 (2009)
 - Deuteron effects
 - Non-resonant background absent
 - $C^{A_5}(0) = 1.19 \pm 0.08$, $M_{A \Delta} = 0.94 \pm 0.03$ GeV
- Alam et al., arXiv:1509.08622 & R. Alam @ NuInt15
 - Deuteron effects
 - N* resonances: $P_{11}(1440)$, $S_{11}(1535)$, $D_{13}(1520)$, $S_{11}(1650)$, $P_{13}(1720)$.
 - C^A₅(0) =1.00, M_{A △} = 1.026 GeV
 - **20% reduction** of the GT relation $C_5^A(0) = 1.15 1.2$

- **N**- Δ axial form factors: determination of C^A₅(0) and M_{A Δ}
- $C_5^A = C_5^A(0) \left(1 + \frac{Q^2}{M_{A\Delta}^2} \right)^{-2}$
- From ANL and BNL data on $u_{\mu} \, d
 ightarrow \mu^{-} \, \pi^{+} \, p \, n$
- Graczyk et al., PRD 90 (2014)
 - Deuteron effects
 - Non-resonant background present
 - **N**- Δ e.m. form factors fitted to F₂ data (e-p scattering)
 - $C_5^A(0) = 1.10^{+0.15}_{-0.14}, M_{A\Delta} = 0.85^{+0.09}_{-0.08} \text{ GeV}$

Watson's theorem LAR, E. Hernandez, J. Nieves, M. J. Vicente Vacas, arXiv:1510.06266

Unitarity

Time reversal invariance

 $\sum_{M} \langle M|T|F \rangle^* \langle M|T|I \rangle = -2 \mathrm{Im} \langle F|T|I \rangle \in \mathbb{R}$

For $W N \rightarrow \pi N$

assuming that $|M\rangle = |F\rangle = |\pi N\rangle$

schematically:

 $\langle \pi N | T | \pi N \rangle^* \langle \pi N | T | W N \rangle = -2 \mathrm{Im} \langle \pi N | T | W N \rangle \in \mathbb{R}$

 $\langle \pi N | T | \pi N \rangle \approx \langle \pi N | T_{\text{strong}} | \pi N \rangle$

Watson's theorem LAR, E. Hernandez, J. Nieves, M. J. Vicente Vacas, arXiv:1510.06266

Unitarity

Time reversal invariance

For W N $\rightarrow \pi$ N

 $\sum_{\rho} \sum_{L} \frac{2L+1}{2J+1} (L, 1/2, J; 0, -\lambda') (L, 1/2, J; 0, -\rho) \langle J, M; L, 1/2 | T_{\rm str} | J, M; L, 1/2 \rangle^* \langle J, M; 0, \rho | T | 0, 0; r, \lambda \rangle \in \mathbb{R}.$

For the dominant J=3/2, I=3/2, L=1 \Leftrightarrow P₃₃ partial wave

$$\left[\sum_{\rho} (1, 1/2, 3/2; 0, -\rho) \left(1, 1/2, 3/2; 0, -\rho\right) \langle 3/2, M; 0, \rho | T | 0, 0; r, \lambda \rangle\right] e^{-i\delta_{P_{33}}} \in \mathbb{R}$$

writing $T = T_{\Delta} + T_B e^{-i\delta(W,q^2)}$ we impose Watson's theorem.

This approach has been applied for π photo and electroproduction
 Olsson, NPB78 (1974)
 Carrasco, Oset, NPA536 (1992)
 Gil, Nieves, Oset, NPA627 (1997)

L. Alvarez-Ruso, IFIC

Watson's theorem LAR, E. Hernandez, J. Nieves, M. J. Vicente Vacas, arXiv:1510.06266

- Unitarity
- Time reversal invariance

This approach has been applied for π photo and electroproduction

Watson's theorem LAR, E. Hernandez, J. Nieves, M. J. Vicente Vacas, arXiv:1510.06266

Unitarity

Time reversal invariance

For W N $\rightarrow \pi$ N

 $\sum_{\rho} \sum_{L} \frac{2L+1}{2J+1} (L, 1/2, J; 0, -\lambda') (L, 1/2, J; 0, -\rho) \langle J, M; L, 1/2 | T_{\rm str} | J, M; L, 1/2 \rangle^* \langle J, M; 0, \rho | T | 0, 0; r, \lambda \rangle \in \mathbb{R}$

• For the dominant J=3/2, I=3/2, L=1 \Leftrightarrow P₃₃ partial wave $\left[\sum_{\rho} (1, 1/2, 3/2; 0, -\rho) (1, 1/2, 3/2; 0, -\rho) \langle 3/2, M; 0, \rho | T | 0, 0; r, \lambda \rangle\right] e^{-i\delta_{P_{33}}} \in \mathbb{R}$

writing $T = T_{\Delta} + T_B e^{-i\delta(W,q^2)}$ we impose Watson's theorem.

This approach has been applied for π photo and electroproduction
 In weak production two phases δ_V and δ_A are needed

Watson's theorem LAR, E. Hernandez, J. Nieves, M. J. Vicente Vacas, arXiv:1510.0626
 Fit to ANL and BNL data with W < 1.4 GeV

• $C^{A_{5}}(0) = 1.12 \pm 0.11$, $M_{A \Delta} = 0.95 \pm 0.06$ GeV

• Consistent with the off-diagonal GT relation $C_5^A(0) = 1.15 - 1.2$

Discrepancies between ANL and BNL datasets

Reanalysis by Wilkinson et al., PRD90 (2014)

- **Flux normalization independent ratios:** CC1 π^+ / CCQE
- Good agreement for ratios
- Better understood CCQE cross section used to obtain the CC1 π^+ one

- New fit to ANL and BNL data
 - Shape from original ANL $d\sigma/dQ^2$
 - Integrated σ from Wilkinson et al.: points with $E_{\nu} < 1$ GeV

C^A₅(0) =1.14 ± 0.07, M_{A Δ} = 0.96 ± 0.07 GeV
C^A₅(0) =1.12 ± 0.11, M_{A Δ} = 0.95 ± 0.06 GeV ← former fit
C^A₅(0) =1.15 - 1.20 ← GT

Fits to ANL and BNL data

C_{A₅}(0) =1.12 \pm 0.11, M_{A Δ} = 0.95 \pm 0.06 GeV \leftarrow original data (A)

■ $C^{A_5}(0) = 1.14 \pm 0.07$, $M_{A \Delta} = 0.96 \pm 0.07$ GeV \leftarrow reanalysis (B)

Relative error: $r_A = 10 \% \Rightarrow r_B = 6 \%$

Is this precision enough?

NN final state interactions: **d** target

- Wu, Sato and Lee, PRC 91 (2015) and H. Lee @ NuInt15
- Reduce the cross section for pn final states but not for pp
- Cuts in the actual measurements should be considered
- Dynamical model Sato, Uno, Lee, PRC67 (2003)
 - **Lippmann-Schwinger equation in coupled channels** \Rightarrow unitarity

Watson's theorem exactly fulfilled

Extended (DCC) to other meson production channels Nakamura et al, PRD92 (2015)

(Modern) cross section measurements:

MiniBooNE: on CH₂ at <E_ν> ~ 1 GeV
 ν_μ ν_μ ν_μ NCπ⁰ Aguilar Arevalo et al., PRD81 (2010)
 ν_μ CCπ⁺ Aguilar Arevalo et al., PRD83 (2011)
 ν_μ CCπ⁰ Aguilar Arevalo et al., PRD83 (2011)

MINERvA: on CH at <E_{\nu}> ~ 4 GeV
 $u_{\mu} CC \pi^{\pm}$ Eberly et al., arXiv:1406.6415
 $\bar{\nu}_{\mu} CC \pi^{0}$ Le et al., PLB749 (2015)

ArgoNeuT: on Ar at $\langle E_{\nu} \rangle \sim 9.6 \text{ GeV} (\nu_{\mu})$ and 3.6 GeV ($\bar{\nu}_{\mu}$) $\nu_{\mu} \bar{\nu}_{\mu} \text{ NC}\pi^{0}$ Acciarri et al., arXiv:1511.00941

Incoherent 1 π production in nuclei $\nu_l A \to l \pi X$

Fermi motion, or more realistic SF, and Pauli blocking

• Modification of the $\Delta(1232)$ properties in the medium

$$D_{\Delta} \Rightarrow \tilde{D}_{\Delta}(r) = \frac{1}{(W + M_{\Delta})(W - M_{\Delta} - \operatorname{Re}\Sigma_{\Delta}(\rho) + i\tilde{\Gamma}_{\Delta}/2 - i\operatorname{Im}\Sigma_{\Delta}(\rho))}$$

$$\begin{split} \Gamma_{\Delta} &\leftarrow \text{Free width } \Delta \to \mathsf{N} \ \pi \ \text{modified by Pauli blocking} \\ \operatorname{Re}\Sigma_{\Delta}(\rho) &\approx 40 \mathrm{MeV} \frac{\rho}{\rho_0} \qquad \operatorname{Im}\Sigma_{\Delta}(\rho) \leftarrow \begin{array}{c} \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \\ \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \\ \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \\ \bullet \Delta \ \mathsf{N} \to \mathsf{N} \ \mathsf{N} \ \mathsf{N} \end{split}$$

π propagation (scattering, charge exchange), absorption (FSI)
 semiclassical cascade, transport models

GiBUU Leitner, LAR, Mosel, PRC 73 (2006)

Effects of FSI on pion kinetic energy spectra

- **strong absorption in \Delta region**
- **side-feeding from dominant** π^+ **into** π^{o} **channel**
- secondary pions through FSI of initial QE protons

Comparison to MiniBooNE: $CC1\pi^0$ Aguilar-Arevalo, PRD83 (2011)

Hernandez et al., PRD87 (2013)

Lalakulich, Mosel, PRC87 (2013)

Comparison to MiniBooNE: $CC1\pi^0$ Aguilar-Arevalo, PRD83 (2011)

Hernandez et al., PRD87 (2013)

- Deficit at forward π^0 angles
 - Two-nucleon mechanisms (?)

Lalakulich, Mosel, PRC87 (2013)

Comparison to MINERvA: $CC\pi^{\pm}$ Eberly et al., arXiv:1406.6415

Comparison to MINERvA: $CC\pi^{\pm}$ Eberly et al., arXiv:1406.6415

Gibuu: deficit of π^{\pm} at forward angles

MINERvA measurement Higuera et al., PRL 113 (2014)

Nulnt15

- PCAC models Rein & Sehgal, NPB 223 (1983), Kartavtsev et al., PRD 74 (2006), Berger & Sehgal, PRD 79 (2009), Paschos & Schalla, PRD 80 (2009)
 - In the q²=0 limit, PCAC is used to relate ν induced coherent pion production to πA elastic scattering
 - q²=0 approximation neglects important angular dependence at low energies and for light nuclei
 - **A** A elastic not realistic \Rightarrow experimental π A cross section
- Microscopic models Kelkar et al., PRC55 (1997); Singh et al., PRL 96 (2006); LAR et al., PRC 75, 76 (2007); Amaro et al., PRD 79 (2009), Nakamura et al, PRC 81 (2010), Zhang et al. PRC 86 (2012)
 - Same hadronic/nuclear input as for the incoherent(resonant) channel
 - Can be applied/validated in other reactions (γ , e, π , ...)
 - **Limited to the** Δ region and below
 - Technically more complex and harder to implement than PCAC models

Microscopic model: comparison to MINERvA data, LAR, preliminary

Good agreement at the Delta(1232) peak

Microscopic model: comparison to MINERvA data, LAR, preliminary

 Δ (1232) contribution is less forward peaked than data

PCAC models: comparison to MINERvA data, LAR, preliminary

Improvement in $\pi N \Rightarrow$ disagreement with data !?!

Conclusions

- ν -induced pion production on nucleons and nuclei is relevant for oscillation studies and interesting for hadron physics
- Consistency with the off-diagonal G-T relation for the N-∆ transition is restored by imposing the Watson's theorem
- Proper understanding of ν -induced pion production on nuclei still missing
- Coherent pion production
 - Microscopic description OK at the Delta(1232) peak
 - Are PCAC models realistic at MINERvA energies?