v-Deuteron Reactions In the Δ(1232) Region

T.-S. Harry Lee Argonne National Laboratory

Collaborators : Jia-jun Wu, Toru Sato

A necessary task for neutrino experiments at few-GeV:

Develop theoretical models for calculating the nuclear effects in the $\Delta(1232)$ region

A necessary task for neutrino experiments at few-GeV:

Our approach:

1. Construct a model for the electroweak excitation of the $\Delta(1232)$ to describe :

a. data on the proton target
b. data on the deuteron target (This talk)
determine cross sections on the neutron

- 2. Apply the constructed model to calculate nuclear effects by using
 - a. multiple-scattering theory for deuteron (This talk)
 - b. The Δ -hole model for heavy nuclei

Nakamura, Sato, Lee, Szczerbinska, Kubodera, PR C81,035502 (2010)

Excitation of $\Delta(1232)$ is dominated by single pion production

Need a model to describe the data of :

$$\nu + p \rightarrow l^{-} + \pi^{+} + p$$

$$\nu + n \rightarrow l^{-} + \pi^{0} + p$$

$$\nu + n \rightarrow l^{-} + \pi^{+} + n$$

$$e + p -> e' + \pi^{0} + p$$

 $e + p -> e' + \pi^{+} + n$
 $e + n -> e' + \pi^{0} + n$
 $e + n -> e' + \pi^{-} + p$

$$\overline{\nu} + n \rightarrow l^+ + \pi^- + n$$

$$\overline{\nu} + p \rightarrow l^+ + \pi^0 + n$$

$$\overline{\nu} + p \rightarrow l^+ + \pi^- + p$$

Achieved by the SL Model (1996-2005)

Nucleon target :

T. Sato , T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)
T. Sato, T.-S. H. Lee, Phys. Rev. C 63, 055201 (2001)
T. Sato, I. Uno, T.-S. H. Lee, Phys, Rev. C67,065201 (2003)
I. Uno, T. Sato, T.-S. H. Lee, Phys. Rev. C72, 025204 (2005)

Deuteron target:

K. Hafidi, T.-S. H. Lee, Phys. Rev. C (2001) J. Wu, T. Sato, T.-S. H. Lee, Phys. Rev. C 91, 035203 (2014)

Approach of SL model:

Apply the Osaka unitary transformation method

M. Kobayashi, T.Sato, H.Ohtsubo, Prog. Theor. Phys. 98 927 (1997)

Construct an energy independent Hamiltonian with π , N, Δ hadronic degrees of freedom from phenomenological Lagrangians of relativistic quantum field theory

SL Model

(Sato, Lee, PR C 54, 2660 (1996);C63,055201 (2001))

Procedures: • Fit $\pi N \rightarrow \pi N$ phase shift

Procedures:

•Fit $\gamma N \rightarrow \pi N$, N(e,e' π)N data

$\Delta \rightarrow \gamma N$ form factors are determined

Structure functions of $p(e, e' \pi^0) p$

Pion electroproduction Structure functions

(data CLAS from C. Smith, 2004)

Meson cloud effect in $\gamma N \rightarrow \Delta(1232)$ form factors

Extend SL Model to include J^{CC} and J^{NC}

• Charged current $J^{CC} = (V^{1} + i V^{2}) - (A^{1} + i A^{2})$

•Neutral current $J^{NC} = (1-2\sin^2\theta_W) J^{em} - V_{isoscalar} - A^3$

Objective: Extract N – Δ axial form factors from

N(ν, μ π) reactions
Parity-iolating asymmetry of inclusive N(e,e')

Procedures:

•Non-resonant axial current (A¹, A², A³) are derived from effective Lagrangians

Adjust $G^{A}_{N,\Delta}(Q^{2}) = \langle \Delta | (A^{1} + iA^{2}) | N \rangle$ to fit $N(v, \mu \pi)$ data

Sato, Uno, Lee, PR C67,065201 (2003)

v-N Total cross sections

Sato, Uno, Lee, PR C67,065201(2003)

Test A³ and $G^{A}_{N,\Delta}(Q^2)$ by Parity-violating inclusive N(e,e')

Experimental test (2011) of SL prediction (2005)

Electron data : parity violation asymmetry

G⁰@JLab, arXiv:1212.1637

$$A = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L}$$

Exp:

$$G^A_{N\Delta}(Q^2) = -0.05 \pm (0.35)_{\text{stat}}$$

 $\pm (0.34)_{\text{sys}} \pm (0.06)_{\text{th}}$

$$G^A_{N\Delta}(Q^2) = -0.196$$

SL model prediction (2005)

SL Model can describe almost all available data of electroweak pion production in the $\Delta(1232)$ region

It can be used to calculate the nuclear effects to analyze neutrino experiments

But

the predicted amplitudes on neutron are not well checked

SL model does not describe the data on neutron well

Possible reason: Previous analysis of data on deuteron target did not include final πNN interaction

Need to study final state interaction (FSI) effects

Study of FSI using SL model:

1. d(e,e' π^+) pp : search for pion excess in nuclei

K. Hafidi, T.-S. H. Lee, Phys. Rev. C (2001)

J. Wu, T. Sato, T.-S. H. Lee, Phys. Rev. C 91, 035203 (2014)

Motivated by the neutrino experiments

Approach:

Apply the multiple scattering theory to calculate γd and νd reaction amplitudes from a Hamiltonian with N, π and Δ

Model Hamiltonian with N, π , Δ

Lee, Matsuyama (1985-1992)

Calculations include :

- Fermi motion effects
- Spin rotaion effects $|p_L, m_s >_d = R_w(\Lambda) |p_{c,} m_s >$
- Lorentz transformaion of currents $[J]_d = \Lambda [j]_N \Lambda^{-1}$
- Exact loop-integrations of FSI terms

Apply the SL model to study

γd-> π⁻ pp γd-> π⁰np

J. Wu, T. Sato, T.-S. H. Lee Phys. Rv. C91, 035203 (2014)

In the $\Delta(1232)$ region

γd -> π⁰ np

γd -> π⁻ nn

FSI is large for T=0 NN state FSI is weak for T=1 NN state

$$\nu_{\mu}d \rightarrow \mu^{-}\pi^{+}pn$$

 $\nu_{\mu}d \to \mu^{-}\pi^{0}pp$

FSI is large for T=0 NN state FSI is weak for T=1 NN state

$$E_{\nu} = 1 GeV$$

$$\theta_{\mu} = 25^{o}$$

~ Delta-QF kinematics

NN invariant mass distribution

FSI is weak for T=1 NN state

Need to re-analyze of ANL and BNL data !

Summary

- •For analyzing neutrino experiments at 1-3 GeV, it is necessary to develop theoretical models for calculating nuclear effects in the $\Delta(1232)$ region.
- The SL Model can describe almost all electroweak pion production data and has been applied to calculate nuclear effects by using a. multiple scattering theory for deuteron target (this talk)
 b. Δ-hole model for heavy nuclei
- The final state interaction effects on γd, vd -> π NN are very large for final T=0 NN state and must be included to extract the cross sections on neutron from data on deuteron
- Our results suggest the need for re-analysis of ANL and BNL data.

Back Up

Transition matrix element (radial integral) of two-nucleon wave function

Final state	$\int_{0}^{\infty} R_{2S+1}L_{J}(r)R_{d}(r)r^{2}dr$
${}^{3}S_{1}(pn)$	O(orthogonality of wave function)
${}^{1}S_{0}(pn,nn,pp)$	finite
Initial state	$^{3}S_{1}(deuteron)$ (S=1,L=0,J=1)

This property can be only taken into account by using distorted wave, not plane wave approximation.

Δ-Hole model calculation of ${}^{12}C(\pi, \pi')X$

Δ-hole model calculation of ⁴He (π^+ , p)NN

Inclusive ${}^{12}C(v, \mu) X$

Szczerbinska, Sato, Kubodera, Lee et al., PLB 649 132 (2007)

•Coherent ${}^{12}C(\nu, \mu, \pi^0){}^{12}C$

Nakamura, Sato, Lee, Szczerbinska, Kubodera, PR C81, 035502 (2010)

Inclusive $A(v,\mu)X$

Szczerbinska, Sato, Kubodera, Lee et al., PLB 649 132 (2007)

•Impulse approximation : $T = \Sigma t(i)$

Objectives:

- a. Examine Fermi Gas Model
- b. Make prediction using Spectral function

$$\begin{split} W^{\mu\nu} &\sim \int d\vec{p'} \, d\vec{k} \, d\vec{p} \, \theta(p_F - |\vec{p'}|) \, \theta(|\vec{p}| - p_F) & \Leftarrow \text{Fermi Gas} \\ &\times \Lambda^{\mu\mu'} \langle \pi N(p') | \, j_{\mu'} \, |N(p) \rangle_{\pi N - \text{cm}} & \Leftarrow \text{SL} \\ &\times \Lambda^{\nu\nu'} \langle \pi N(p') | \, j_{\nu'} \, |N(p) \rangle_{\pi N - \text{cm}}^* \end{split}$$

* Fermi Gas to Spectral Function

Benhar et al. NPA 579 493 (1994)

$$\frac{3}{4\pi \, p_F^3} \int d\vec{p} \, \theta(p_F - |\vec{p}|) \to \int d\vec{p} \, dE \, P(\vec{p}, E)$$

Include correlations

Nuclear Effect for 1π in Δ -region

Nuclear correlation and final state interaction must be included in calculating the nuclear effects in analyzing experimental data

Same formula for $e + {}^{12}C \rightarrow e' + \pi + X$

Test the model by the available data

Dip region : need to include two-body mechanisms which are beyond the impulse approximation calculations

Coherent A(ν , $\mu\pi^0$)A reactions

Nakamura, Sato, Lee, Szczerbinska, Kubodera, PR C81, 035502 (2010)

Main motivation:

Remove π^0 which could fake $v_{\mu} \rightarrow v_e$ oscillation events

Δ-hole Model

Δ-hole model prediction of ${}^{12}C(\gamma, \pi^0){}^{12}C$

In agreement with the dataMedium effects on ∆ is large

Nakamura et al. (2010)

Current effort:

Extend SL model to include higher mass nucleon resonances (N*) to predict v-nucleus reactions

Starting point :

Hamiltonian with excited nucleons

Hamiltonian with excited nucleons

(Matsuyama, Sato, Lee, Phys. Rept, 2007

$$H_{int} = h_{N^*, MB} + v_{MB,M'B'}$$

N* : Confined quark-gluon core
MB : : γN,
$$\pi$$
N, 2π -N, η N, KΛ, KΣ, ω N
(πΔ, ρ N, σ N)

ANL-Osaka Model has been developed

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

ANL-Osaka Model

Kamano, Nakamura, Lee, Sato, PRC 88 (2013)

Solve $T_{ab}(E) = V_{ab} + \sum_{c} V_{ac}G_{c}(E) T_{cb}(E)$

Analysis Database

	T .	T 7 (1 / 10	
	١	Vaves #	≠ of data	Waves #	≠ of data		$d\sigma/d\Omega$	P R a Sum
	$\pi N \to \pi N \text{ PWA}$	S_{11}	56×2	D_{13}	52×2	$\pi^- p \to \eta p$	294	294
		S_{31}	56×2	D_{15}	52×2			
Pion-induced		P_{11}	56×2	D_{33}	50×2	$\pi^- p \to K^0 \Lambda$	544	262 806
reactions		P_{13}	52×2	D_{35}	31×2	$\pi^- p \to K^0 \Sigma^0$	215	70 285
(nuroly strong		P_{31}	52×2	F_{15}	39×2	$\pi^+ p \to K^+ \Sigma^+$	552	312 864
(purely strong		P_{33}	56×2	F_{17}	23×2	1		
reactions)				F_{35}	34×2	Sum	1605	644 - 2249
				F_{37}	35×2	Sum	1005	044 - 2245
	JAID							
				Sum	1288			

~ 28,000 data points to fit

		$d\sigma/d\Omega$	Σ	T	P	G	H	E	F	$O_{x'}$	$O_{z'}$	$C_{x'}$	$C_{z'}$	$T_{x'}$	$T_{z'}$	$L_{x'}$	$L_{z'}$	sum
	$\gamma p \to \pi^0 p$	8290	1680	353	557	28	24	-	-	-	-	-	-	-	-	-	-	10860
	$\gamma p \to \pi^+ n$	5384	1014	661	221	75	123	-	-	-	-	-	-	-	-	-	-	7478
Photo-	$\gamma p \to \eta p$	1076	197	50	-	-	-	-	-	-	-	-	-	-	-	-	-	1323
production reactions	$\gamma p \to K^+ \Lambda$	611	118	69	410	-	-	-	-	66	<mark>66</mark>	89	89	-	-	-	-	1518
	$\gamma p \to K^+ \Sigma^0$	2949	116	-	320	-	-	-	-	-	-	52	52	-	-	-	-	3489
	Sum	18310	3043	1133	1508	103	147	-	-	66	66	141	141	-	-	-	-	24668

Partial wave amplitudes of pi N scattering

Vector current (Q²=0) for 1π Production is well-tested by data

$d\sigma/d\Omega$ (µb/sr)

 $\gamma p \rightarrow \eta p$

1499	1490	1493	1496	1499	1501	1504	1506
	- 14.90	- 1493	- 14.90	- 1498 - 1498		1.504 	
	TO DRIVE THE PARTY OF	- Changenger (1	+	ł.,.
1509	1511	1514	1516	1519	1524	1527	1528
	<u></u>	<u>╞</u> ╍╌┶ [┲]	<u></u>		The second second second	- The second second second	- Linn mult
			<u>t , , , , , , , , , , , , , , , , , , ,</u>				
1529	1532	1534	1537	1539	1542	1544	1547
	Frank in t	I I	I I I I I I I I I I I I I I I I I I I	I and			
	+ + + - + + - + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + -	+ + + - + + - + + - + + + + + + + + +	+ + +
1549	1552	1554	1557	1558	1559	1562	1564
F 7	F	F	F				
1566	1560	1671	1574	1576	1570	1591	1593
 	م بينانان بيرين . م بينانان بيرين .					1281	
	· ·	F				Louis .	- Indiana
1586	1588	1590	1593	1595	1597	1600	1602
<u></u>						-	L
	+++					Lange I.	
1604	1607	1609	1611	1614	1616	1617	1618
	and the second						-
1620	1623	1625	1627	1629	1632	1634	1636
					-	t	t
			+ + +		+ + +		
1638	1640	1643	1645	1646	1647	1649	1651
and a second		T					F
16.52	14.56	16.50	1460	1662	1464	1447	16.71
1003	9691	1008	1000	1062	1004	1067	1671
		-	-	-	-	· · · · ·	
1674	1675	1679	1684	1688	1692	1696	1700
		+ -					F
تسبيب المسجى	t	t	t	t		Langer and Langer	يستوسوني ا
1702	1704	1707	1711	1715	1719	1723	1726
	+ -	+ -	+ -	+ -	+ -	+ -	ł
<u></u>					the second se		Lugar garage
1730	1734	1737	1741	1745	1748	1752	1755
⊢ −	+ -	+ -	÷ -	+ -	L _	+ -	t
L	L.	l .	1 .	1 .	T 7	Į .	+
1756	1759	1762	1765	1769	1772	1775	1779
1756	1759	1762	1765	1769	1772	1775	1779
1756	1759	1762	1765	1769	1772	1775	1779
1756	1759 1783	1762	1765	1769	1772	1775	1779
1756	1759 1783	1762 1785	1765 1789	1769	1772	1775	1779
1756	1759 1783 1783	1762 1785 1785	1765 1785 1798	1769 1792 1792	1772 1797	1775	1779
1756 1758 1782 1809	1759 1783 1783	1762 1785 1785	1765 1788 1798 1822	1769 1792 1792	1772	1775	1779
1756 1756 1782 1809	1759 1783 1783 1810	1762 1785 1785 1815	1765 1765 1798 1822	1769 1792 1830	1772 17797 1797 1835	1775	1779 1779 1806 1850
1756 1782 1809	1759 1783 1810 1861	1762 1785 1785 1815	1765 1788 1798 1822 1822	1769 1792 1830 1910	1772 1777 1797 1835	1775 1801 1840	1779 1806 1850 1850
1756 	1759 1783 1810 1861	1762 1785 1785 1815 1870	1765 1788 1822 1825	1769 1792 1830 1910	1772 1777 1797 1835 1934	1775 1801 1840	1779 11806 1850
1756 1756 1782 1809 1860	1759 1783 1810	1762 1785 1815 1870	1765 1788 1822 1885	1769 1792 1830 1910	1772 17797 1835 1934	11775 11801 1840 1959	1779 1779 1806 1850 1982

Kamano, Nakamura, Lee, Sato, 2013

Vector current (Q²=0) for η Production is well-tested by data

 $\pi N \to \pi \pi N$

(parameters had been fitted to $\pi N \rightarrow \pi N$) Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC79 025206 (2009)

