MINERVA's Flux Prediction

Tomasz Golan (University of Rochester / Fermilab) On behalf of MINERvA Collaboration

Main INjector ExpeRiment v-A aka MINERvA

- MINERvA is a neutrino scattering experiment at Fermilab
- Collaboration of about 65 nuclear and particle physicists from more than 20 institutions
- NuMI beam is used to measure cross section for neutrino-nucleus interactions
- Detector includes several different nuclear targets which can be used to measure nuclear effect

MINERvA Detector

120 modules of 4 types:

- nuclear targets
- scintillator
- ECal
- HCal

MINOS near detector as muon spectometer

MINERvA's Flux Prediction

Previous analyses used flux prediction known as Generation 0 and Generation 1

Flux	Analysis	Reference
Generation 0	v_{μ} CCQE	PRL 111 (2013) 022502
Generation 0	anti v_{μ} CCQE	PRL 111 (2013) 022501
Generation 1	CC target ratios	PRL 112 (2014) 231801
Generation 1	Coherent π	PRL 113 (2014) 261802
Generation 1	v_{μ} muon+proton	PRD 91 (2015) 071301
Generation 1	anti $\nu_{\mu} CC\pi^{0}$	PLB 749 (2015) 130-136

Generation 2 includes many improvements:

- Geometry
- Focusing uncertainties
- Additional hadron production data
- Better accounting for beam attenuation
- New framework allows to use MIPP thick target data
- And allows predictions of the flux for NOvA and uBooNE

MINERVA @ NUINT15

There are many improvements in our understanding of NuMI beam. Do not miss other MINERvA's talk to see how it affects our results:

Talk	Speaker	Date	Flux
v_e CCQE results	J. Wolcott	Tue, 14:05	gen1 with v-e constraint
v_{μ} CCQE update	M. Betancourt	Tue, 14:30	gen1 for muon + proton gen2 update on previous CCQE
Search for MEC	P. Rodrigues	Tue, 15:25	gen2
DIS in nuclear targets	J. Mousseau	Thu, 10:15	gen1

NuMI Beam

NIM A806 (2016) 279-306

NuMI Beam Simulation

- Flux simulation starts with a Geant4 simulation of the NuMI beamline (G4NuMI)
- Geant 4.9.2p03 is used with FTFP_BERT hadronic physics list
- The results of the simulation are corrected by external data
- Similar approach to the one T2K used (Phys. Rev. D 87, 012001 (2013))

BERT – Bertini intranuclear cascade

FTFP – The FRITIOF Precompound

Geometry improvements

- Thin layer (1.0 +/- 0.5mm) of cooling water around the inner conductor
- Beryllium windows (0.5 mm each) at the entrance and at the exit of NuMI baffle
- Argon instead of Air inside the magnetic horns
- The longitudinal target position

Focusing uncertainties

Horn geometry and water layer was (re)studied to evaluate focusing uncertainty

Hadron interactions

- All interactions leading to neutrino production are stored in ntuple
- Including whole kinematics and material
- This information is used to apply corresponding data for our reweighting procedure

What interacts where

Number of interactions per neutrino at the detector

- As simulated by g4numi
 - Most of it is covered by NA49 and MIPP data

NA49 data

NUINT15 MINERvA's Flux Prediction

MIPP data

- MIPP is hadron
 production experiment
 located at Fermilab
- Pions yields off the NuMI target are measured
- Ratios of kaon/pion yields are measured on thin target and NuMI replica

PRD 90 (2014) 3, 032001

Reweighting

• Using external hadron production data events are weighted by:

$$w_{HP} = \frac{f_{data}(x_F, p_T, E)}{f_{MC}(x_F, p_T, E)}, \quad f \equiv \frac{1}{\sigma} E \frac{d^3 \sigma}{dp^3}$$

 The beam attenuation (due to mismodeling of total inelastic cross section) is taken into account by applying a second weight (for each volume):

$$w_{att} = e^{-L\rho(\sigma_{data} - \sigma_{MC})}$$

• "Many-Universes" method is used

to propagate external data uncertainties to our flux

$$w_{u} = w_{att,u} \cdot \prod_{i} w_{HP,u,i}$$

for each universe (u)
data central value is
randomly shifted
according to product of HP
weights for all
reweightable
interactions (i)

Uncertainties

by M. Kordosky

uncertainty

It is time for results

- Plots presented in this talk include all geometry improvements
- They include thin target hadron production data correction
- They do NOT include thick target hadron production correction
- The thick target data will be discussed at Joint Experimental-Theoretical Physics Seminar at Fermilab (aka Wine&Cheese)
 by L. Aliaga on Dec 17 (and in his PhD thesis!)

Muon Neutrino

 ν_{μ}

18

20

16

----- absorption

····· nucleon-A

14

NUINT15 MINERvA's Flux Prediction

Muon Anti-Neutrino

NUINT15 MINERvA's Flux Prediction

Electron Neutrino

Flux comparisons

v-e scattering constraint

Predicted number of signal events is higher than indicated by data (weighting up universes that agree better with data) First analysis which uses this constraint: v_e CCQE, see J. Wolcott talk on Tue

- Electroweak theory predicts precisely cross section for neutrino-electron scattering
- Experimental signature is a very forward single electron in the finale state

v-e scattering constraint

T. Golan (U. Rochester / Fermilab) •22

NUINT15 MINERvA's Flux Prediction

Low-v constraint

Differential cross section can be • approximated by

$$\frac{d\sigma}{d\nu} = A(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2})$$

• It is constant for:
$$\frac{\nu}{E} \to 0$$

- It can be used to constraint flux prediction
- At high energies normalization is fixed • using high precision cross section measurements (like NOMAD)

NuMI Low Energy Beam, Right Sign

$$V_{\mu}$$

 V_{μ}
 $V_{$

Summary

- MINERvA's flux prediction is significantly improved
- Geometry of NuMI beamline is updated
- Geant4-based simulations are corrected using external hadron production data
- v-e scattering analysis is done
- Work on low-v constraint is done as well as inclusion of MIPP thick target data
- Do not miss Wine&Cheese by L. Aliaga on Dec 17 and by J. Nelson on Jan 8

Backup slides

Flux playlists

Beam mode	Playlist	New Z position (cm)
LE FHC	1	9.50
nominal:	7	9.18
$10~{ m cm}$	9	10.40
	13	9.17
LE RHC	downstream	9.50
	5	8.85
	10	9.18
LE 0HC	6	9.18
pME FHC	2	99.57
nom:100cm	11	99.17
pME RHC	3	99.57
	12	99.17
pHE FHC	4	249.57
nom:250cm	8	250.09

NUINT15 MINERvA's Flux Prediction

Table 1: Playlists flux production

Interaction map legend

pC -> π X: NA49 data scaled using FLUKA (checked by comparing with NA61)

pC -> KX: NA49 data and K/ π ratios from MIPP

pC -> NX: NA49 data for nucleon production

nC -> pX: assuming isoscalar symmetry

nucleon-A: for targets other than C

A-scaling is applied for kinemtics covered by data

otherwise 40% assumed

meson-inc: meson as the projectile, educated guess (uncorrelated 40% uncertainty) others: anything else, really rare, assuming 40% uncertainty

v-e scattering constraint

Probability of a universe:

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- µ: data events
- σ: error on data (fraction uncertainty = 13%)
- x: MC events in i-th multi-universe

Low-v constraint

Gen 0 vs Gen 2 (muon neutrino)

Gen 0 vs Gen 2 (muon antineutrino)

MIPP thin data

MIPP thin data

