Systematics for Atmospheric Neutrinos in Super-Kamiokande and Hyper-Kamiokande

Roger Wendell, ICRR NuInt15 2015.11.17 Osaka, Japan

Introduction

- Some Introductory Material
 - Atmospheric Neutrinos, Super-K and Hyper-K
- Systematic Uncertainties
- ...that hamper mass hierarchy measurements
- Generally speaking most of the content of this talk is relevant to any detector with capability to distinguish atmospheric ve and vµ
 - Most of the relevant systematic errors are from the flux and cross section models and nothing too specific to water Cherenkov
- Some comments about other experiments
- Conclusion

Neutrino Interactions Relevant for Atmospheric Neutrinos

Super-Kamiokande: Introduction

- 40,000 Events
- Statistics limited
- Use a total of ~60 independent error sources (157 errors among all SK periods) including
 - Flux, Cross Section, Detector Response

- 22.5 kton fiducial volume
- Optically separated into
- Inner Detector 11,146 20" PMTs
- Outer Detector 1885 8" PMTs
- No net electric or magnetic fields
- Excellent PID between showering (e-like) and non-showering (m-like)
 - < 1% MIS ID at 1 GeV</p>

	Atm v	Super-K		
	σ _{mom} e/μ	5.6% /3.6%		
	$\sigma_{_{dir}}$ e/ μ	3.0° / 1.8°		
а	v CC Purity :			
	FC e-like	94.2 %		
	FC μ-like	95.7 %		
	PC μ-like	98.7 %		

Hyper-Kamiokande: Introduction

- Present studies are performed assuming
- 560 kton fiducial volume
- Equivalent detector performance for SK
- No additional improvements relative to Super-K analyses
- Ie, expected improvements in event reconstruction with upcoming reconstruction algoritms are <u>not</u> included
- Similarly no extrapolation of flux and cross section systematics

Atm v	Hyper-K			
σ _{mom} e/μ	5.6% /3.6%			
$\sigma_{_{dir}}$ e/ μ	3.0° / 1.8°			
ν CC Purity :				
FC e-like	94.2 %			
FC µ-like	95.7 %			
PC μ-like	98.7 %			

Super-K Atmospheric v Analysis Samples

Super-K Atmospheric v Analysis Samples

Searching for Three-Flavor Effects: Oscillation probabilities ~100 km **Cosine Zenith Angle Cosine Zenith Angle** $P(\nu_{\mu} \rightarrow \nu_{\mu})$ $P(v_{\mu} \rightarrow v_{e})$ 0.9 0.6 0.8 0.5 0.5 0.5 0.7 0.6 0.4 0 0.5 0.3 0.4 0.3 0.2 -0.5 -0.5 0.2 0.1 0.1 10² 10² 10 ~10,000 km¹ 10 Energy [GeV] Energy [GeV] "Sub-GeV" "Multi-Ge

- Key Points
- No $v_{\mu} \rightarrow v_{e}$ Appearance above ~20 GeV,
- Resonant oscillations between 2-10 GeV (for v or \overline{v} depending upon MH)
- No oscillations above 200 GeV
- No oscillations from downward-going neutrinos above ~5 GeV
- Expect effects in most analysis samples, largest in upward-going v_{a}

Super-Kamiokande Atmospheric v Analysis Results

Hyper-Kamiokande Atmospheric v Sensitivity

- Expect better than ~3σ sensitivity to the mass hierarchy using atmospheric neutrinos alone
- 3σ Octant determination possible if $\sin^2 2\theta_{23} < 0.99$
- Oscillation parameter uncertainties are significant

Neutrino Interactions Relevant for Atmospheric Neutrinos

Detector Systematics v Int. Systematics Flux Systematics All Systematics No Systematics $\Phi v_{e} / \overline{v_{e}} E > 10 \text{ GeV}$ $\Phi v_{e} / \overline{v_{e}} 1 < E < 10 \text{ GeV}$ $\Phi v_{e} / \overline{v_{e}} E < 1 \text{ GeV}$ **Multi-Ring PID** 1 Ring PID $CC v_{\tau}$ DIS σ norm **DIS Model** 0.5 1.5 2.5 2 0

Systematic Effect on Hierarchy Sensitivity at Super-K

Reduction in $\Delta\,\chi^2$ Rejction of Wrong Hierarchy Relative To No Systematics

- Sensitivity to the hierarchy is largely affected by uncertainties interaction of high energy neutrinos
- particularly the CC $v\tau$ background component
- The situation is compounded at Hyper-K

Δχ2, θ23	0.40	0.60
No Syst.	0.81	4.7
Full Syst.	0.59	2.7

Tau Background For Mass Hierarchy Error

- Many events in the MH energy region are DIS
 - Means many rings
- Hadronic tau decays will produce many visible particles
 - decay is prompt and granularity of the detector is not enough to resolve the tau
 - Many overlapping rings tend to look like electron neutrinos
- Currently the cross section is assigned an uncertainty of 25%, based on model comparisons

Tau Cross Section Error Mitigation

- Currently this error is constrained only somewhat using sidebands in the SK analysis
 However, in a separate analysis CC ντ interactions have been identified in the SK data at 3.8σ
 - Method is based on a neural network which works to identify hadronic τ decays
- This information can be incorporated into the oscillation analysis to further mitigate the effected of these events (work in progress)

Particle Identification for Multiple Ring Topologies

Just the same as $v\tau$ events DIS events with multiple rings often look like electrons

- Both of these events were classified as electrons and fall in the hierarchy signal sample
- The one on the left is DIS $\nu\mu$ event
- Ring PID uncertainty is estimated to be between 3 and 6% depending upon the sample
- This systematic can be mitigated by making improvements to the reconstruction
- Addition of hit timing to original PID algorithm underway (short term)
- New maximum likelihood-based reconstruction (fiTQun) with both q,t, unhit probability, and many other features nearly ready (mid term, base reconstruction for Hyper-K)

Deep Inelastic Scattering

- DIS Cross section systematics are taken from comparison of the default NEUT model with the "CKMT" parameterization below 10 GeV
 - Difference between these two model ranges from 10~50%
 - In addition an overall 5% normalization uncertainty is assumed at all energies

- reported next page
- Sensitivity to δcp is mostly through ve $\leftrightarrow v\mu$ oscillations below 1 GeV
- Though mostly QE interactions, lack of pointing and systematic errors hamper measurements
- Improved separation between neutrino and antineutrino components desired

Hyper-K's Sensitivity to $\delta_{_{CD}}$ with Atmospheric neutrinos

- Generally sensitivity is affected by systematics directly connected to the low energy neutrino flux
 - To a lesser_extent the low energy interaction model:
 - CCQE v/v : 5~15% below 500 MeV, CCQE $v\mu$ /ve : 2~10% below 500 MeV
- Note that the detector performance also becomes important
 - Single ring mis-PID uncertainty is 1~2% below 1330 MeV

Hyper-K's Sensitivity to $\delta_{_{CD}}$ with Atmospheric neutrinos

- Generally sensitivity is affected by systematics directly connected to the low energy neutrino flux
- To a lesser extent the low energy interaction model:
 - CCQE v/v : 5~15% below 500 MeV, CCQE $v\mu$ /ve : 2~10% below 500 MeV
 - Improved measurements will help
- Note that the detector performance also becomes important
 - Single ring mis-PID uncertainty is 1~2% below 1330 MeV

Atmospheric Neutrino Flux Uncertainties (Honda 2011)

- Systematic Errors on the Neutrino flux at Super-K (Hyper-K) are based on both direct estimates from the authors of the Honda 2011 Flux and by comparisons with other models
 - Flavor Ratio uncertainty is 2% below 1 GeV
 - Electron ratio uncertainty is 5% below 10 GeV
- Changes in solar activity affect the low energy neutrino flux, but the exact magnitude depends on the real experimental run
- Here 10% uncertainty is assumed on a run with 35% (65%) 'high' ('low') activity

Other Systematic Error Estimates

- Systematic errors for the Bartol flux have been estimated using variations in the hadron production model
- Electron ratio uncertainty between 5% and 7% below 5 GeV
- Differing approaches with basically consistent results
- Atmospheric neutrino flux models at low can be improved by
 - Better hadron production measurements at low momenta
 - Most 500 MeV v are produced by cosmic ray protons with between 3 and 30 GeV
 - Better muon measurements at momenta around 500 MeV

Some Brief Comments

- Many of the above statements are not specific to water Cherenkov detectors, but with appropriate switch from electron to muon neutrino-specific errors.
 - Notable exceptions include $v\tau$ cross section
- MINOS(+), collected(s) atmospheric neutrino data, but due to its smaller size (5.4kton) and lower efficiency for tagging electron neutrinos, its limited heavily by statistics
 - The systematics with the largest impact on their oscillation analyses were absolute flux normalization errors (the least well known part of the flux)
- The ICAL experiment intends to make mass hierarchy measurements using atmospheric muon neutrinos, predominantly
- So far using a simplified error model they find the biggest impact on sensitivity from the zenith spectrum shape (5%) of the flux and its energy dependence (5%)
- full analysis is under development

Conclusion

- For the most part, atmospheric neutrino measurements are primarily limited by statistics
- However, the future (Hyper-K, DUNE, PINGU) is coming
 - while atmospheric neutrino measurements may not be competitive with long-baseline experiments in measuring θ 23 and Δ m223
 - They offer strong, complementary sensitivity to sub-leading oscillation effects
- Making the most of atmospheric neutrinos requires better handle over systematic errors, particularly those from the flux and interaction model

Supplements

Primary Systematics for Measurements with Atmospheric $\boldsymbol{\nu}$

- Measurements of δcp
- Flux Systematics
 - Nue bar / nue ratio
 - Nubar /Nu ratio generall
- Cross-Section and Reconstruction Errors have about the same impact
 - Single-Ring PID
- Neutrino Mass Hierarchy
 - Flux Uncertainties
 - Flux above 1 GeV
 - Cross Section Uncertainties
 - CC nu tau
 - DIS Cross section
 - Detector Uncertainties
 - PID for Multi Event topologies
- Measurement of Δm^2

Super-K Atmospheric v Analysis Samples

Fully Contained (FC)

Partially Contained (PC)

Upward-going Muons (Up-

- In total 19 analysis samples: multi-GeV e-like samples are divided into v-like and v-like subsamples
- Dominated by $v_{\mu} v_{\tau}$ oscillations
- Interested in subdominant contributions to this picture
- le three-flavor effects, Sterile Neutrinos, LIV, etc.

Comparison to Current Super-K Exposure

	Hyper-K	SK-IV	
Fiducial Vol.	560 kton	22.5 kton	
Eff. Area	22,000 m ²	1500 m ²	
Protons	1.8×10^{35}	$7.5 imes 10^{33}$	
Neutrons	1.4×10^{35}	$6.0 imes 10^{33}$	
Fully Contained μ -/e-like	740,200	41,000	
Partially Contained μ -like	64,400	3,100	
Upward-Going $\boldsymbol{\mu}$	83,400	7,400	

- Event rates are a comparison between 10 years of Hyper-K and 12.8 years of SK
 - Compare: HK beam events 42,000 v_{μ} and 7,000 v_{e}
- Analyses exposures have been adjusted to account for difference in fiducial volume and effective area between Hyper-K and Super-K

CP Violation Sensitivity

- Limited sensitivity to CP-violation with atmospheric v alone
- Hyper-K can constrain only about 50% of δ_{cp} space at 3 σ , so one of the CP-conserving points is allowed at that C.L.
- Sensitivity from SubGeV e-like samples becomes limited due to flux and cross section systematics
 - Reconstruction, systematic, and analysis improvements possible and expected to help considerably

Oscillation-induced v_{-} measurements

- Super-K has demonstrated the ability to identify v_{r} events in the atmospheric neutrino data (3.8σ)
- After 10 years Hyper-K will have O(2,000) $v\tau$ events that can be used to study
 - CC v cross section, leptonic universality, etc.

LBNE

28.5

44.8

~8

Geophysics: Chemical Composition of Earth's Outer Core

Density profile of the Earth is well known from seismic measurements

- Outer core is thought to be liquid iron+Ni and another light element (Unmeasured!)
- Z/A ratio is important to understanding formation of Earth and its magnetic field
 With 10 years of data Hyper-K can open the field of Earth Spectroscopy
- First Z/A measurement, can exclude lead-based and water-based outer core
- Longer exposures more useful (want to discriminate iron from pyrolite)

Hyper-K's sensitivity to Sterile Neutrino Mixing

- Searches for sterile neutrinos with the atmospheric neutrinos are independent of the sterile Δm^2 and the number sterile neutrinos
 - For $\Delta m_s^2 \sim 1 \text{ eV}^2$ oscillations appear fast
- $| U_{\mu 4} |^2$ Induces a decrease in event rate of μ -like data of all energies and zenith angles
- **U**_{τ_4} |² Shape distortion of angular distribution of higher energy μ -like data
- Sensitivity gains are limited by
 - flux and cross section errors
 - Better knowledge during actual hyper-K running can improve these constraints

	Hyper-K	SK-IV
$ U_{\mu4} ^2$	0.029	0.038
U ₁₄ ²	0.066	0.164

Lorentz-invariance violating oscillations

$$H = UMU^{\dagger} + V_e + H_{LV}$$

$$H_{LV} = \begin{pmatrix} 0 & a_{e\mu}^T & a_{e\tau}^T \\ (a_{e\mu}^T)^* & 0 & a_{\mu\tau}^T \\ (a_{e\tau}^T)^* & (a_{\mu\tau}^T)^* & 0 \end{pmatrix} - \frac{4E}{3} \begin{pmatrix} 0 & c_{e\mu}^{TT} & c_{e\tau}^{TT} \\ (c_{e\mu}^{TT})^* & 0 & c_{\mu\tau}^T \\ (c_{e\tau}^T)^* & (c_{\mu\tau}^T)^* & 0 \end{pmatrix}$$

- Lorentz invariance violating effects can be probed using atmopsheric neutrinos
- Analysis using the Standard Model Extension (SME)
- Effects of LIV controlled by two sets of complex parameters
 - $a_{\alpha\beta}^{T}$ dim = 3 induces oscillation effects ~ L
 - $\mathbf{c}_{\alpha\beta}^{\mathsf{TT}}$ dim = 4 induces oscillation effects ~ $\mathbf{L} \times \mathbf{E}$
- Hyper-K Sensitivity will be ~ 3× better than Super-K

	еµ	ετ	μτ		еµ	ετ	μτ
$\mathfrak{R}(a^T)$	4×10 ⁻²⁰ MiniBooNE	8×10 ⁻²⁰ Double Chooz	-	$\mathfrak{R}(c^{TT})$	1×10 ⁻¹⁹ MiniBooNE	1×10 ⁻¹⁷ Double Chooz	-
SK:	2×10 ⁻²³	4×10 ⁻²³	6×10 ⁻²⁴		2×10 ⁻²⁶	1×10 ⁻²⁴	5×10 ⁻²⁷
HK:	7×10 ⁻²⁴	2×10 ⁻²³	2×10 ⁻²⁴		6×10 ⁻²⁷	7×10 ⁻²⁵	2×10 ⁻²⁷
Combination of Beam and Atmospheric Neutrinos

Beam and atmospheric neutrino data provide largely complimentary sensitivity with several common systematic error sources (cross section, detector)

Hyper-K Hierarchy Sensitivity With Beam Inputs

- Plots for true inverted hierarchy are similar
- Large benefit of precise determination of θ_{23} and Δm_{23}^2 from the beam
 - Example of benefit of combination with beam (neutrino mode only)
 - 1 Year of running: 1.5×10^{21} POT, with 560 kton FV

- Though atmospheric neutrinos have limited sensitivity to CP-violation relative to the beam measurement, the sensitivity is largely complementary
- Multiple baselines and matter effects give weaker degeneracies
- Addition of atmospheric neutrino data to the beam measurement can improve the δ_{cp} measurement, particularly in regions of limited sensitivity for the beam

Comment on Leptonic Unitarity

If the PMNS matrix is unitary we expect these relations (for I = e, μ , τ)

Normalization
$$N_l \equiv \sum_{i=1,2,3} |U_{li}|^2 = 1$$

Triangle

$$T_{lm} \equiv \sum_{i=1,2,3} U_{li} U_{mi}^* = 0$$

flavor states

- The pieces of the matrix that can be probed depend on L and E of neutrino source
- Hyper-K will have both "fixed" L/E (beam) and "varying" L/E (atmospheric v)
- Computations assume that the U_{pmns} is unitary, but this can be tested

Eigenstates

Models of new physics (SeeSaw, SUSY) predict U_{pmns} is piece of a larger matrix

For LBL vµ disappearance:
$$|U_{\mu3}|^2 (1 - |U_{\mu3}|) \rightarrow \frac{|U_{\mu3}|^2 (|U_{\mu1}|^2 + |U_{\mu2}|^2|)}{\sum_i |U_{\mu i}|^2|}$$

Hyper-Kamiokande can probe many elements of this matrix by itself with combined beam and atmospheric neutrino measurements

Comment on Leptonic Unitarity

If Unitarity is NOT assumed, then to first order

$$\begin{cases} \text{LBL } \nu_{\mu} \rightarrow \nu_{\mu} \\ \text{LBL } \nu_{\mu} \rightarrow \nu_{e} \\ \text{ATM } \nu_{\mu} \rightarrow \nu_{\tau} \\ \text{ATM Reson } \nu_{\mu} \rightarrow \nu_{e} \\ \text{ATM Sub-GeV } \nu_{\mu} \rightarrow \nu_{\mu} \end{cases}$$

$$\frac{|U_{\mu3}|^2 (|U_{\mu1}|^2 + |U_{\mu2}|^2|)}{\mathbb{R} \{ U_{\mu3} U_{e3}^* (U_{\mu1} U_{e2}^* + U_{\mu3} U_{e2}^*) \}} \\ \mathbb{R} \{ U_{\mu3} U_{\tau3}^* (U_{\mu1} U_{\tau2}^* + U_{\mu3} U_{\tau2}^*) \} \\ (r |U_{\mu3}|^2 - 1) \\ |U_{\mu1}|^2 |U_{\mu2}|^2$$

- Typically single oscillation channels are sensitive to multiple parts of the mixing matrix
 - true for any experiment
- However atmospheric neutrino measurements have sufficient breadth in L/E to have some sensitivity to both "1-2" and "2-3" columns of the mixing matrix (in principle)
 - separating $U_{\mu 1}$ and $U_{\mu 2}$ with (1.0~3.0 GeV data)
- To really make progress improvements in detector performance and systematic errors (flux, cross-section) will be essential

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

Global Study of Leptonic Unitarity

- Hyper-K Beam + Atmospheric measurements:
- Contribute to normalizations
- $\alpha = \mu$ (red line)
- $\alpha = \tau$ (orange line)
- i = 3 (brown line)

- Contribute to closure of triangles
- α,β = e, μ (cyan line)
- $\alpha,\beta = \mu,\tau$ (orange line)
- i,j = 2,3 (brown line)
- Hyper-K can provide high statistics measurements with full systematic correlations to improve (overconstrain) our understanding of these relations

Atmospheric Neutrinos As Background

Indirect Dark Matter Searches

Annihilation in the Galactic Center

Search for WIMP Annihilations in the Galactic Center

- Data and MC are binned in momentum and direction to the galactic center
- Signal for a given WIMP mass appears in only some of analysis samples, but is peaked towards the galactic center
 - Remaining analysis samples help control background and its uncertainty
- Hyper-K's sensitivity should exceed Super-K's limits by a factor of 4~5

Search for WIMP Annihilations in the Sun

Black lines are results from SK Red lines are Hyper-K 5.6 Mton year sensitivity

- Similarly the data can be binned in the direction to the sun
- Hyper-K limits are expected to be a factor of 3~5 stronger than Super-K in the absence of a signal
 - Strongest limits on SD interactions at low WIMP masses
 - Possible to exclude hints for SI interactions with hardest channel ($\tau^+\tau^-$)

Other Physics at Hyper-K

- Atmospheric neutrino flux measurements
- Tau neutrino studies (oscillation-induced, cross section)
- Non-standard Neutrino Interactions in atmospheric neutrinos
- Search for WIMP annihilation at the center of the Earth
- Various nucleon decay modes
 - $p \rightarrow \nu \pi^{\scriptscriptstyle +}$, $n \rightarrow \nu \pi^{\scriptscriptstyle 0}$
 - $p \rightarrow l^+M^0$ (other antilepton + meson modes)
 - $n \rightarrow l^{-} M^{+}$ (Recent theoretical interest)
 - B+L modes
 - dinucleon decay modes
- \blacksquare n \leftrightarrow n oscillations
- Astrophysical neutrino source search
- The statistical uncertainty at Super-K on many of the analyses above is large so generically we can expect improvements at Hyper-K

Summary

- Atmospheric neutrino physics at Hyper-K is expected to be expansive and precise
- 3σ+ mass hierarchy and octant determination
- Improved sensitivity to exotic oscillation scenarios
- New studies of v_{τ} physics and lepton unitarity
- First measurements of Earth core's chemical composition
- In combination with the beam neutrino data further precision is expected
- Nucleon decay physics potential is equally promising
 - Sensitivity to $p \rightarrow e^+\pi^0$ at $\tau/B > 10^{35}$ years (only with Hyper-K!)
 - Sensitivity to $p \rightarrow \nu K^+$ at $\tau/B > 10^{34}$ years and beyond
 - Order of magnitude increase in sensitivity in many other modes
- The future of non-accelerator measurements at Hyper-K is bright

 θ_{13} Fixed Analysis (NH+IH) SK Only

Preliminary

49

Fit (517 dof)	χ^2	θ_{13}	$\delta_{_{\rm cp}}$	$\theta_{_{23}}$	$\Delta m_{_{23}}(x10^{-3})$
SK (NH)	582.4	0.0238	4.19	0.575	2.6
SK (IH)	585.4	0.0238	3.84	0.575	2.3

- Offset in these curves shows the difference in the hierarchies
 Normal hierarchy favored at: $\chi^2_{NH} \chi^2_{IH} = -3.0$, not significant
 - Preference for matter over vacuum oscillations at ~1 σ (82% C.L.)

 $\chi^{2}_{\rm NH} - \chi^{2}_{\rm IH} = -3.2 \ (-3.0 \ {\rm SK \ only} \)$

CP Conservation (sin δ_{cp} = 0) allowed at (at least) 90% C.L. for both hierarchies

Offset in these curves shows the difference in the hierarchies

Normal hierarchy favored at:
$$\chi^2_{NH} - \chi^2_{IH} = -3.0$$
, not significant

 $\chi^2_{\rm NH} - \chi^2_{\rm IH} = -3.2$ (-3.0 SK only)

CP Conservation (sin δ_{cp} = 0) allowed at (at least) 90% C.L. for both hierarchies

Preliminary

Offset in these curves shows the difference in the hierarchies

Offset in these curves shows the difference in the hierarchies

Super-K Atmospheric v Event Topologies

Fully Contained (FC)

Partially Contained (PC)

Upward-going Muons (Up-µ)

FC: ~1 GeV , PC: ~10 GeV, UpMu:~ 100 GeV

Evidence for v_{τ} Appearance at Super-K

- Search for events consistent with hadronic decays of au leptons
- Multi-ring e-like events, mostly DIS interactions
- Negligible primary v_{τ} flux so v_{τ} must be oscillation-induced : **upward-going**

Event selection performed by neural networkTotal efficiency of 60%

$$\beta = 0 : \text{no } v_{\tau}$$

Data =
$$\alpha(\gamma) \times bkg + \beta(\gamma) \times signal$$

Result	Background	DIS (γ)	Signal
SK-I+II+III	0.94 ± 0.02	1.10 ± 0.05	1.42 ± 0.35

This corresponds to 180.1 ± 44.3 (stat) $\pm 17.8 \pm 15.2$

180.1 \pm 44.3 (stat) +17.8-15.2 (sys) events, a **3.8** σ excess (Expected 2.7 σ significance)

Changes and Updates to Oscillation Analyses

- Addition of a new analysis sample
- Multi-Ring e-like Inclusive (Fully Contained)
 - Events that fail the multi-ring e-like selection
- Improved systematic error treatments
 - Updates to cross-section, FSI, detector systematics, 2p-2h (MEC) uncertainties
- 1775 days of SK-IV data: 4581.4 days total
 - (282.2 kton yrs)

Multi-Ring e-like Sample Purities

Purity	$CC\nu_{_{\!\!\!\!e}}$	CCv_{μ}	CCV_{τ}	NC
v-like	72.2%	8.3%	3.2%	16.1%
v-like	75.0%	6.5%	2.8%	15.6%
other	30.9%	33.4%	5.1%	30.5%

Sterile Neutrino Oscillations in Atmospheric Neutrinos

- Sterile Neutrino searches at SK are independent of the sterile ∆m² and the number sterile neutrinos
 - 3+1 and 3+N models have the same signatures in atmospheric neutrinos
 - For $\Delta m_s^2 \sim 1 \text{ eV}^2$ oscillations appear fast: $< \sin^2 \Delta m^2 L/E > \sim 0.5$

■ | U_{µ4} |²

- Induces a decrease in event rate of µlike data of all energies and zenith angles
- U_{τ4}
- Shape distortion of angular distribution of higher energy µ-like data

Search for WIMP Annihilations in the Galactic Center and Sun

- Search for a signal of WIMP annihilation from the Galactic Halo or solar interior assuming several branching modes
 - vv, bb, tt, W⁺W⁻
- Signal would appear atop the ATM v background, peaked towards either the galactic center or towards the sun
- Simulate signal and detector response for all v flavors
- Same analysis samples as oscillation analyses, but binned in angle to the galactic center
 - Use all samples
 - Previous analyses used only Up μ sample
 - Allows probe of both low O(GeV) and high O(TeV) WIMP masses

Search for WIMP Annihilations : Signal Demonstration O(100) MeV

$$\chi \chi \rightarrow b\overline{b}$$

M(χ) = 5 GeV / c²

- Analysis uses all available data
 - Previous analyses used only the upward-going muons
- 100% branching fraction assumed for each tested annihilation channel
- Equal fluxes at detection • $\phi(v_e) = \phi(v_\mu) = \phi(v_\tau)$

Detector

Galactic Center

Search for WIMP Annihilations : Signal Demonstration

$$\chi \chi \rightarrow b\overline{b}$$

M(χ) = 100 GeV / c²

- Analysis uses all available data
 - Previous analyses used only the upward-going muons
- 100% branching fraction assumed for each tested annihilation channel
- Equal fluxes at detection

•
$$\phi(v_e) = \phi(v_\mu) = \phi(v_\tau)$$

Detector

Galactic Center

Search for WIMP Annihilations in the Galactic Center: Results

No evidence for event excess on top of the atmospheric neutrino background

- N.B. ~300 events allowed at 5 GeV test point are distributed over several analysis bins
- Stringent limits placed on the velocity-averaged annihilation cross section down to WIMP masses of 1 GeV ($\chi\chi \rightarrow vv$)

- Upgraded detector electronics in SK-IV store all PMT hits in a 500 µsec window after a physics trigger
- Search for the 2.2 MeV gamma from p(n,γ)d
- Search is performed using a neural network built from 16 variables
 - Data and MC show good agreement on atmospheric neutrino sample
- Future: Implement neutron tagging to help distinguish v/v interactions and to reduce proton decay backgrounds

2.2 MeV γ Selection	
Efficiency	20.5%
Background / Event	0.018

Sterile Neutrino Oscillations in Atmospheric Neutrinos

- Sterile Neutrino searches at SK are independent of the sterile Δm^2 and the number sterile neutrinos
 - 3+1 and 3+N models have the same signatures in atmospheric neutrinos
 - For $\Delta m_s^2 \sim 1 \text{ eV}^2$ oscillations appear fast: $< \sin^2 \Delta m^2 L/E > \sim 0.5$

■ | U_{µ4} |²

- Induces a decrease in event rate of µlike data of all energies and zenith angles
- | U_{τ4} |²
- Shape distortion of angular distribution of higher energy µ-like data

	Μ	NS		Sterile	2
(U_{e1}	U_{e2}	U_{e3}	U_{e4})
	$U_{\mu 1}$	$U_{\mu 2}$	$U_{\mu 3}$	$U_{\mu4}$	
	$U_{\tau 1}$	$U_{\tau 2}$	$U_{\tau 3}$	$U_{\tau 4}$	
	U_{s1}	U_{s2}	U_{s3}	U_{s4}	
	÷	÷	÷	÷	·)

Sterile Oscillations Results PRD.91.052019 (2015)

- Turning off sterile matter effects while preserving standard three-flavor oscillations provides a pure measurement of | U₁₄ |²
- Using sterile matter effects, but decoupling v_{e} oscillations provides a joint measurement of $| U_{\mu 4} |^2$ and $| U_{\tau 4} |^2$, with a slightly biased estimate of the former
- Using SK-I+II+III+IV data (4438 days) $| \bigcup_{\mu 4} |^2 < 0.041$ at 90% C.L. $| \bigcup_{\tau 4} |^2 < 0.18$ at 90% C.L.

Tests of Lorentz Invariance

 $H = UMU^{\dagger} + V_e + H_{LV}$

$$\pm \begin{pmatrix} 0 & a_{e\mu}^{T} & a_{e\tau}^{T} \\ (a_{e\mu}^{T})^{*} & 0 & a_{\mu\tau}^{T} \\ (a_{e\tau}^{T})^{*} & (a_{\mu\tau}^{T})^{*} & 0 \end{pmatrix} - E \begin{pmatrix} 0 & c_{e\mu}^{TT} & c_{e\tau}^{TT} \\ (c_{e\mu}^{TT})^{*} & 0 & c_{\mu\tau}^{TT} \\ (c_{e\tau}^{TT})^{*} & (c_{\mu\tau}^{TT})^{*} & 0 \end{pmatrix}$$

- Lorentz invariance violating effects can be probed using atmopsheric neutrinos
 - Focus here on isotropic effects
 - (sensitive to sidereal effects as well...)
- Analysis using the Standard Model Extension (SME)
 - Not a perturbative calculation
 - Effects computed using full solutions of the Hamiltonian
- Effects of LIV controlled by two sets of complex parameters
 - $a_{\alpha\beta}^{T}$ dim = 3 induces oscillation effects ~ L
 - $\mathbf{c}_{\alpha\beta}^{\mathsf{TT}}$ dim = 4 induces oscillation effects ~ $\mathbf{L} \times \mathbf{E}$

66

Constraints on Lorentz Invariance Violating Oscillations: 90% C.L.

SK-I+II+III+IV : 4438 days of data

PRD.91.052019 (2015)

- Perform separate fits on both hierarchy assumptions for each coefficient and each sector : eµ , e\tau, $\mu\tau$
- No indication of Lorentz invariance violation
 - Limits placed on the real and imaginary parts of **6 parameters** $\leq O(10^{-23})$
 - New limits on $\mu\tau$ sector, improvements by **3 to 7** orders of magnitude over existing limits

Systematic error			Fit value (%)	σ (%)
Flux normalization	$E_{\nu} < 1 \mathrm{GeV}^{\mathrm{a}}$		21	25
	$E_{\nu} > 1 \text{ GeV}^{b}$		1.7	15
$(\nu_{\mu}+\bar{\nu}_{\mu})/(\nu_{e}+\bar{\nu}_{e})$	$E_{\nu} < 1 \mathrm{GeV}$		-0.25	2
	$1 < E_{\nu} < 10 \text{ GeV}$		-0.26	3
	$E_{\nu} > 10 \text{ GeV}^{c}$		6.7	5
$\bar{\nu}_e/\nu_e$	$E_{\nu} < 1 \mathrm{GeV}$		2.5	5
	$1 < E_{\nu} < 10 \text{ GeV}$		2.6	5
	$E_{\nu} > 10 \text{ GeV}^{d}$		2.6	8
$\bar{\nu}_{\mu}/\nu_{\mu}$	$E_{\nu} < 1 \text{ GeV}$		0.021	2
	$1 < E_{\nu} < 10 \text{ GeV}$		1.9	6
	$E_{\nu} > 10 \text{ GeV}^{e}$		4.2	15
Up/down ratio	< 400 MeV	e-like	-0.0037	0.1
		µ-like	-0.011	0.3
		0-decay μ -like	-0.041	1.1
	> 400 MeV	e-like	-0.029	0.8
		µ-like	-0.018	0.5
		0-decay μ -like	-0.063	1.7
	Multi-GeV	e-like	-0.026	0.7
		µ-like	-0.0074	0.2
	Multi-ring sub-GeV	e-like	-0.015	0.4
		µ-like	-0.0074	0.2
	Multi-ring multi-GeV	e-like	-0.011	0.3
	ar e tra construited crem 🐨 La construited de la Calenda	µ-like	-0.0074	0.2
	PC		-0.0074	0.2

Horizontal/vertical ratio	< 400 MeV	<i>e</i> -like	0.011	0.1
		µ-like	0.011	0.1
		0-decay μ -like	0.033	0.3
	> 400 MeV	e-like	0.15	1.4
		µ-like	0.21	1.9
		0-decay μ -like	0.15	1.4
	Multi-GeV	e-like	0.35	3.2
		µ-like	0.25	2.3
	Multi-ring sub-GeV	e-like	0.15	1.4
		µ-like	0.14	1.3
	Multi-ring multi-GeV	e-like	0.31	2.8
	-	µ-like	0.17	1.5
	PC		0.19	1.7
K/π ratio in flux calculation ^f			1.3	10
Neutrino path length			0.094	10
Sample-by-sample	FC multi-GeV		-5.8	5
	$PC + stopping UP-\mu$		0.79	5
Matter effects			1.8	6.8

^aUncertainty decreases linearly with log E_{ν} from 25% (0.1 GeV) to 7% (1 GeV).

^bUncertainty is 7% up to 10 GeV, linearly increases with $\log E_{\nu}$ from 7% (10 GeV) to 12% (100 GeV) and then to 20% (1 TeV). ^cUncertainty linearly increases with $\log E_{\nu}$ from 5% (30 GeV) to 30% (1 TeV).

^dUncertainty linearly increases with $\log E_{\nu}$ from 8% (100 GeV) to 20% (1 TeV). ^cUncertainty linearly increases with $\log E_{\nu}$ from 6% (50 GeV) to 40% (1 TeV).

^fUncertainty increases linearly from 5% to 20% between 100 GeV and 1 TeV.

Systematic error		Fit value (%)	σ (%)
M_A in QE and single π		-6.4	10
CCQE cross section ^a		1.8	10
CCQE $\bar{\nu}/\nu$ ratio ^a		18	10
CCQE μ/e ratio ^a		0.12	10
Single meson production cross section		14	20
DIS cross section		2.2	5
DIS model comparisons ^b		-1.5	10
DIS Q^2 distribution (high W) ^c		0.003	10
DIS Q^2 distribution (low W) ^c		-3.1	10
Coherent π production		1.8	100
NC/CC		9.8	20
ν_{τ} cross section		-4.6	25
Single π production, π^0/π^{\pm}		-35	40
Single π production, $\bar{\nu}_i / \nu_i \ (i = e, \mu)^d$		-11	10
NC fraction from hadron simulation		-3	10
π^+ decay uncertainty sub-GeV 1-ring	e-like 0-decay	-0.48	0.6
	μ -like 0-decay	-0.64	0.8
	e-like 1-decay	3.3	4.1
	μ -like 1-decay	0.71	0.9
	μ -like 2-decay	4.5	5.7
Δm_{32}^2 [15]		2	3.98
$\sin^2(\theta_{23})$ [15]		2.8	10.9
Δm_{21}^2 [3]		0.079	2.55
$\sin^2(\theta_{12})$ [3]		0.42	6.89
$\sin^2(2\theta_{13})$ [45]		-0.55	10.5

^aDifference from the Nieves [67] model is set to 1.0. ^bDifference from CKMT [71] parametrization is set to 1.0. ^cDifference from GRV98 [72] is set to 1.0. ^dDifference from the Hernandez [73] model is set to 1.0.

	r*								
		SK-I		SK-II		SK-III		SK-l	V
Systematic error		Fit value	σ	Fit value	σ	Fit value	ε σ	Fit value	σ
FC reduction		0.006	0.2	0.007	0.2	0.038	0.8	0.030	0.3
PC reduction		-0.99	2.4	-3.47	4.8	-0.041	0.5	-0.24	1
FC/PC separation		-0.027	0.6	0.081	0.5	0.003	0.9	0.0001	0.02
PC stopping/through-going so	eparation (bottom)	-22.4	23	0.2	13	-0.2	12	-1.06	6.8
PC stopping/through-going separation (barrel)		1.88	7	-5.54	9.4	-9.0	29	-0.65	8.5
PC stopping/through-going so	eparation (top)	8.3	46	-3.3	19	16.0	87	-3.3	40
Non-v background	Sub-GeV µ-like	0.009	0.1	0.009	0.1	-0.009	0.1	-0.026	0.1
Ū.	Multi-GeV μ -like	0.036	0.4	0.009	0.1	-0.009	0.1	-0.026	0.1
	Sub-GeV 1-ring 0-decay μ -like	0.009	0.1	0.009	0.1	-0.018	0.2	-0.211	0.8
	PC	0.018	0.2	0.062	0.7	-0.16	1.8	-0.129	0.49
	Sub-GeV e-like	0.016	0.5	0.003	0.2	-0.003	0.1	-0.000	0.1
	Multi-GeV e-like	0.003	0.1	0.002	0.1	-0.013	0.4	-0.000	0.1
	Multi-GeV 1-ring e-like	3.3	13	-15.0	38	5.1	27	1.1	18
	Multi-GeV multiring e-like	1.1	12	2.5	11	-6.1	11	3.1	12
Fiducial volume	0	-0.04	2	0.08	2	-0.42	2	0.40	2

(Table continued)
			SK-	·I	SK-	П	SK-	Ш	SK-I	v
Systematic error			Fit value	σ						
Ring separation	< 400 MeV	e-like	1.07	2.3	-1.09	1.3	0.79	2.3	0.05	1.6
0 1		µ-like	0.324	0.7	-1.93	2.3	1.03	3	0.09	3
	> 400 MeV	e-like	0.185	0.4	-1.43	1.7	0.44	1.3	-0.03	1
		µ-like	0.324	0.7	-0.588	0.7	0.205	0.6	-0.018	0.6
	Multi-GeV	e-like	1.71	3.7	-2.18	2.6	0.44	1.3	-0.03	1
		µ-like	0.79	1.7	-1.43	1.7	0.34	1	0.04	1.2
	Multiring Sub-GeV	e-like	-1.62	3.5	3.19	3.8	0.44	1.3	0.06	1.9
		µ-like	-2.08	4.5	6.88	8.2	-0.89	2.6	0.07	2.3
	Multiring multi-GeV	e-like	-1.44	3.1	1.59	1.9	-0.38	1.1	0.027	0.9
		µ-like	-1.90	4.1	0.671	0.8	-0.72	2.1	-0.07	2.4
Particle identification (1 ring)	Sub-GeV	e-like	0.016	0.23	0.099	0.66	0.023	0.26	-0.025	0.28
		µ-like	-0.013	0.18	-0.075	0.5	-0.016	0.19	0.020	0.22
	Multi-GeV	e-like	0.013	0.19	0.036	0.24	0.027	0.31	-0.031	0.35
N		μ -like	-0.013	0.19	-0.039	0.26	-0.026	0.3	0.031	0.35
Particle identification (multiring) Sub-GeV		e-like	-0.31	3.1	-3.39	6	5.09	9.5	2.15	4.2
	Matheony	μ -like	0.066	0.66	1.45	2.5	-2.79	5.2	-0.80	1.6
	Multi-Gev	e-like	0.64	0.5	5.54	9.7	-2.63	4.9	1./1	3.3
Energy solibration		μ-шке	-0.29	2.9	-2.24	3.9	1.43	2.7	-0.80	1.0
Energy calibration			0.00	0.6	-0.20	1.7	0.05	1.2	-0.50	2.5
UP _{-u} reduction	Stopping		-0.185	0.0	-0.070	0.0	0.50	0.7	0.109	0.5
01-μ leddedoli	Through-going		-0.132	0.5	-0.004	0.7	0.080	0.7	0.075	0.3
IIP_u stopping/through_going se	rinough-going		0.007	0.5	0.016	0.5	0.034	0.5	_0.075	0.5
Energy cut for stopping UP- μ	paration		0.085	0.4	0.010	13	0.87	2	0.01	17
Path length cut for through going UP_{μ}			0.86	1.5	1.50	23	-0.12	2.8	-1.87	1.5
Through-going UP- μ showering	separation		3.59	3.4	-2.84	4.4	2.35	2.4	-4.88	3
Background subtraction for UP- μ Stopping ^a			10.2	16	-4.0	21	-2.2	20	-6.7	17
	Nonshowering ^a		-4.0	18	0.8	14	0.6	24	1.8	17
	Showering ^a		-7.5	18	-12.9	14	2.6	24	9.6	24
$\nu_e/\bar{\nu}_e$ separation	e e		-2.67	7.2	0.08	7.9	-9.19	7.7	-4.07	6.8
Sub-GeV 1-ring π^0 selection	$100 < P_e < 250 \text{ MeV/c}$		3.47	9	2.9	10	2.23	6.3	1.92	4.6
	$250 < P_e < 400 \text{ MeV/c}$		3.55	9.2	4.1	14	1.73	4.9	1.25	3
	$400 < P_e < 630 \text{ MeV/c}$		6.1	16	3.3	11	8.4	24	5.6	13
	$630 < P_e < 1000 \text{ MeV/c}$		5.2	14	4.8	16	2.90	8.2	7.0	17
	$1000 < P_e < 1330 \text{ MeV/c}$		4.5	12	2.87	9.8	3.9	11	9.9	24
Sub-GeV 2-ring π^0			0.31	5.6	-2.42	4.4	-1.17	5.9	1.78	5.6
Decay-e tagging			-5.5	10	-2.7	10	1.5	10	1.1	10
Solar activity			0.1	20	17.2	50	2.0	20	0.3	10

^aThe uncertainties in BG subtraction for upward-going muons are only for the most horizontal bin, $-0.1 < \cos \theta < 0$.

Other Systematics

MINOS Atm Nu

Parameter	Uncertainty	Best Fit (2 Osc. Param.)	Best Fit (4 Osc. Param.)
$ \Delta m^2 /eV^2$		1.9×10^{-3}	2.2×10^{-3}
$ \Delta \overline{m}^2 /eV^2$		1.9×10^{-3}	1.6×10^{-3}
$\sin^2 2\theta$		0.99	0.99
$\sin^2 2\overline{\theta}$		0.99	1.00
normalization (contained-vertex ν)	$\sigma = 15 \%$	$+0.6 \sigma$	$+0.7 \sigma$
normalization (ν -induced rock- μ)	$\sigma = 25 \%$	$+0.1 \sigma$	$+0.1 \sigma$
$up/down$ ratio (contained-vertex ν)	$\sigma = 3 \%$	-0.1σ	-0.1σ
ν_e/ν_μ ratio (contained-vertex ν)	$\sigma = 5 \%$	-0.5σ	-0.5σ
$\overline{\nu}_{\mu}/\nu_{\mu}$ ratio (contained-vertex ν)	$\sigma = 10 \%$	-0.5σ	-0.6σ
$\overline{\nu}_{\mu}/\nu_{\mu}$ ratio (ν -induced rock- μ)	$\sigma = 12.5 \%$	$+1.1 \sigma$	$+0.9 \sigma$
NC/CC ratio (contained-vertex ν)	$\sigma = 20 \%$	$+0.6 \sigma$	$+0.6 \sigma$
ν spectrum parameter	$\sigma = 6 \%$	-0.4σ	-0.4σ
$\overline{\nu}$ spectrum parameter	$\sigma = 6 \%$	$+0.3 \sigma$	$+0.3 \sigma$
μ momentum (range)	$\sigma = 3 \%$	-0.3σ	-0.3σ
μ momentum (curvature)	$\sigma = 5 \%$	$+0.3 \sigma$	$+0.3\sigma$
shower energy	$\sigma = 15\%$	$+0.4\sigma$	$+0.4\sigma$

TABLE III. Summary of systematic uncertainties included in the oscillation fit, along with the best fit oscillation and systematic parameters returned by each fit. For the two-parameter fit, equal oscillation parameters are used for neutrinos and antineutrinos; for the four-parameter fit, separate oscillation parameters are used. The best fit systematic parameters are given in units of standard deviations.